Menu Close

let-f-n-x-1-1-x-n-1-1-n-ddfined-on-0-1-1-prove-that-f-n-cs-f-n-2-calculate-I-n-0-1-f-n-x-dx-




Question Number 40150 by maxmathsup by imad last updated on 16/Jul/18
let f_n (x) =(1/((1+x^n )^(1+(1/n)) ))   ddfined on [0,1]  1) prove that f_n →^(cs)  f (n→+∞)  2) calculate I_n = ∫_0 ^1  f_n (x)dx
letfn(x)=1(1+xn)1+1nddfinedon[0,1]1)provethatfncsf(n+)2)calculateIn=01fn(x)dx
Commented by maxmathsup by imad last updated on 21/Jul/18
1) we have f_n (x) =(1+x^n )^(−(1+(1/n)))    =e^(−(1+(1/n))ln(1+x^n ))     but  ln(1+x^n )∼ x^n    (n→+∞) ⇒−(1+(1/n))ln(1+x^n ) ∼−x^n  −(x^n /n) ⇒  f_n (x) ∼  e^(−x^n  −(x^n /n))   →^(cs)     f(x)=1  (n→+∞)
1)wehavefn(x)=(1+xn)(1+1n)=e(1+1n)ln(1+xn)butln(1+xn)xn(n+)(1+1n)ln(1+xn)xnxnnfn(x)exnxnncsf(x)=1(n+)

Leave a Reply

Your email address will not be published. Required fields are marked *