Menu Close

let-f-n-x-1-n-n-x-with-x-gt-0-1-study-the-simple-convergence-of-f-n-x-2-calculate-f-x-




Question Number 52679 by maxmathsup by imad last updated on 11/Jan/19
let f_n (x)=(((−1)^n )/(n+x))  with x>0  1) study the simple convergence of Σ f_n (x)  2) calculate f^′ (x)
letfn(x)=(1)nn+xwithx>01)studythesimpleconvergenceofΣfn(x)2)calculatef(x)
Commented by maxmathsup by imad last updated on 28/Feb/19
1) we have Σ_(n=0) ^∞  (((−1)^n )/(n+x)) =Σ_(n=0) ^∞ (−1)^n  U_n (x)  with U_n (x)=(1/(n+x))  for x>0 fixed U_n is decreasng and lim_(n→+∞) U_n (x)=0  so Σf_n (x) is   a alternate serie  so the simple convegence is assured.  2) we ∣ Σ  (((−1)^n )/((n+x)^2 ))∣ ≤Σ(1/n^2 )   and Σf_n ^′ (x) converges unif . so if  is its sum  f^′ (x) =(Σf_n (x))^′ =Σ f_n ^′ (x) =Σ_(n=0) ^∞  (((−1)^(n+1) )/((n+x)^2 ))
1)wehaven=0(1)nn+x=n=0(1)nUn(x)withUn(x)=1n+xforx>0fixedUnisdecreasngandlimn+Un(x)=0soΣfn(x)isaalternateseriesothesimpleconvegenceisassured.2)weΣ(1)n(n+x)2Σ1n2andΣfn(x)convergesunif.soifisitssumf(x)=(Σfn(x))=Σfn(x)=n=0(1)n+1(n+x)2

Leave a Reply

Your email address will not be published. Required fields are marked *