Menu Close

let-f-n-x-1-x-n-1-e-x-p-0-n-x-p-p-1-prove-that-f-n-x-Q-n-x-e-x-P-n-x-x-2n-1-find-the-polynomial-P-n-and-Q-n-2-prove-that-e-x-P-n-x-Q-n-x-




Question Number 30753 by abdo imad last updated on 25/Feb/18
let f_n (x)=(1/x^(n+1) ) (e^x   −Σ_(p=0) ^(n )    (x^p /(p!)))  1) prove that f^((n)) (x)=((Q_n (x) e^x  −P_n (x))/x^(2n+1) ) find the  polynomial P_n  and Q_n .  2) prove that e^x  −((P_n (x))/(Q_n (x)))=o(x^(2n+1)   )
$${let}\:{f}_{{n}} \left({x}\right)=\frac{\mathrm{1}}{{x}^{{n}+\mathrm{1}} }\:\left({e}^{{x}} \:\:−\sum_{{p}=\mathrm{0}} ^{{n}\:} \:\:\:\frac{{x}^{{p}} }{{p}!}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}^{\left({n}\right)} \left({x}\right)=\frac{{Q}_{{n}} \left({x}\right)\:{e}^{{x}} \:−{P}_{{n}} \left({x}\right)}{{x}^{\mathrm{2}{n}+\mathrm{1}} }\:{find}\:{the} \\ $$$${polynomial}\:{P}_{{n}} \:{and}\:{Q}_{{n}} . \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{e}^{{x}} \:−\frac{{P}_{{n}} \left({x}\right)}{{Q}_{{n}} \left({x}\right)}={o}\left({x}^{\mathrm{2}{n}+\mathrm{1}} \:\:\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *