let-f-n-x-e-nx-2e-2nx-with-x-from-0-1-calculate-0-f-n-x-dx-and-n-0-0-f-n-x-dx-2-find-S-x-n-0-f-n-x-and-0-S-x-dx- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 46610 by maxmathsup by imad last updated on 29/Oct/18 letfn(x)=e−nx−2e−2nxwithxfrom[0,+∞[1)calculate∫0∞fn(x)dxand∑n=0∞(∫0∞fn(x)dx)2)findS(x)=∑n=0∞fn(x)and∫0∞S(x)dx Commented by maxmathsup by imad last updated on 05/Nov/18 1)∫0∞fn(x)dx=∫0∞(e−nx−2e−2nx)dx=∫0∞e−nxdx−2∫0∞e−2nxdx=[−1ne−nx]0∞−2[−12ne−2nx]0∞=1n−2(12n)=0⇒∑n=0∞(∫0∞fn(x)dx)=0 Commented by maxmathsup by imad last updated on 05/Nov/18 2)wehaveS(x)=∑n=0∞e−nx−2∑n=0∞e−2nx=∑n=0∞(e−x)n−2∑n=0∞(e−2x)nandforx>0wegetS(x)=11−e−x−211−e−2x∫S(x)dx=∫dx1−e−x−2∫dx1−e−2x+cbut∫dx1−e−x=∫exex−1dx=ln∣ex−1∣∫2dx1−e−2x=∫2e2xe2x−1dx=ln∣e2x−1∣⇒∫S(x)dx=ln∣ex−1e2x−1∣+c=ln∣1ex+1∣+c⇒∫0∞S(x)dx=[−ln(ex+1)]0+∞=−∞. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 4-tan-2-x-2-1-cos-2-x-80-0-Next Next post: Question-46611 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.