Menu Close

let-f-n-x-n-x-e-nx-with-x-gt-0-1-study-the-simple-and-uniform-convervence-for-f-n-x-2-let-S-x-n-1-f-n-x-prove-that-S-x-1-x-x-0-




Question Number 33698 by math khazana by abdo last updated on 22/Apr/18
let  f_n (x)= n^x  e^(−nx)    with x>0  1) study the simple and uniform convervence for  Σ  f_n (x)  2) let  S(x)= Σ_(n=1) ^∞  f_n (x).prove that  S(x) ∼ (1/x) ( x→0^+ )
$${let}\:\:{f}_{{n}} \left({x}\right)=\:{n}^{{x}} \:{e}^{−{nx}} \:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{simple}\:{and}\:{uniform}\:{convervence}\:{for} \\ $$$$\Sigma\:\:{f}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{let}\:\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{f}_{{n}} \left({x}\right).{prove}\:{that} \\ $$$${S}\left({x}\right)\:\sim\:\frac{\mathrm{1}}{{x}}\:\left(\:{x}\rightarrow\mathrm{0}^{+} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *