Menu Close

let-f-n-x-ne-nx-calculate-lim-n-0-1-f-n-x-dx-and-0-1-lim-n-f-n-x-dx-is-the-convergence-uniform-on-0-1-




Question Number 107286 by mathmax by abdo last updated on 09/Aug/20
let f_n (x) =ne^(−nx)   calculate lim_(n→+∞) ∫_0 ^1 f_n (x)dx  and ∫_0 ^1 lim_(n→+∞) f_n (x)dx  is the convergence uniform on [0,1]?
$$\mathrm{let}\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\mathrm{ne}^{−\mathrm{nx}} \:\:\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{uniform}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right]? \\ $$
Answered by mathmax by abdo last updated on 10/Aug/20
we have ∫_0 ^1 f_n (x) =n∫_0 ^1  e^(−nx)  dx =n[−(1/n)e^(−nx) ]_0 ^1  =−(e^(−n) −1)  =1−e^(−n)  ⇒lim_(n→+∞)  ∫_0 ^1 f_n (x)dx =1  we have lim_(n→+∞) f_n (x) =lim_(n→+∞) ne^(−nx)  =0 for x∈[0,1] ⇒  ∫_0 ^1 limf_n (x)dx =0  we see thst lim ∫f_n ≠∫ limf_n  ⇒the convergence  is not uniform on [0,1]
$$\mathrm{we}\:\mathrm{have}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\mathrm{n}\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−\mathrm{nx}} \:\mathrm{dx}\:=\mathrm{n}\left[−\frac{\mathrm{1}}{\mathrm{n}}\mathrm{e}^{−\mathrm{nx}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=−\left(\mathrm{e}^{−\mathrm{n}} −\mathrm{1}\right) \\ $$$$=\mathrm{1}−\mathrm{e}^{−\mathrm{n}} \:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx}\:=\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{ne}^{−\mathrm{nx}} \:=\mathrm{0}\:\mathrm{for}\:\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{limf}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx}\:=\mathrm{0}\:\:\mathrm{we}\:\mathrm{see}\:\mathrm{thst}\:\mathrm{lim}\:\int\mathrm{f}_{\mathrm{n}} \neq\int\:\mathrm{limf}_{\mathrm{n}} \:\Rightarrow\mathrm{the}\:\mathrm{convergence} \\ $$$$\mathrm{is}\:\mathrm{not}\:\mathrm{uniform}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *