Question Number 41515 by maxmathsup by imad last updated on 08/Aug/18
![let f_n (x) =((sin(2(n+1)x))/(sinx)) if x∈]0,(π/2)] and f_n (0)=2(n+1) let u_n = ∫_0 ^(π/2) f_n (x)dx 1) prove that ∀n fromN u_(n+1) −u_n =2(((−1)^(n+1) )/(2n+3)) 2)find lim_(n→+∞) u_n](https://www.tinkutara.com/question/Q41515.png)
Commented by maxmathsup by imad last updated on 12/Aug/18
![1) u_(n+1) −u_n =∫_0 ^(π/2) ((sin(2(n+2)x)−sin(2(n+1)x))/(sinx))dx but sinp−sinq =cos((π/2)−p) +cos((π/2)+q) =2 cos(((π−p+q)/2))cos(((−p−q)/2)) = 2cos((π/2) −((p−q)/2))cos(((p+q)/2))=2sin(((p−q)/2))cos(((p+q)/2)) ⇒ sin(2(n+2)x)−sin(2(n+1)x)=2sin(x)cos((((4n+6)x)/2))⇒ u_(n+1) −u_n =2∫_0 ^(π/2) sin(x)cos((2n+3)x) .(1/(sinx)) dx = 2∫_0 ^(π/2) cos{(2n+3)x}dx =2[(1/(2n +3)) sin{(2n+3)x}]_0 ^(π/2) =(2/(2n+3))sin{(2n+3)(π/2)} =(2/(2n+3)) sin(nπ +2π−(π/2)) =−(2/(2n +3)) sin((π/2) −nπ) =−(2/(2n+3))cos(nπ) =2((−(−1)^n )/(2n+3)) =2(((−1)^(n+1) )/(2n+3)) ⇒ u_(n+1) −u_n =2(((−1)^(n+1) )/(2n+3))](https://www.tinkutara.com/question/Q41792.png)
Commented by maxmathsup by imad last updated on 12/Aug/18

Commented by math khazana by abdo last updated on 13/Aug/18

Answered by alex041103 last updated on 10/Aug/18
![We know that: sin(2(n+2)x)=sin(2(n+1)x+2x)= =cos(2x)sin(2(n+1)x)+sin(2x)cos(2(n+1)x) cos(2x)=1−2sin^2 x sin(2x)=2sin(x)cos(x) ⇒u_(n+1) =∫_0 ^(π/2) (((1−2sin^2 x)sin(2(n+1)x))/(sin(x)))dx+∫_0 ^(π/2) ((2sin(x)cos(x)cos(2(n+1)x))/(sin(x)))dx =u_n +2∫_0 ^(π/2) (cos(x)cos(2(n+1)x)−sin(x)sin(2(n+1)x))dx= ⇒u_(n+1) −u_n =2∫cos((2n+3)x)dx= =(2/(2n+3))∫cos((2n+3)x)d((2n+3)x)= =(2/(2n+1))[sin((2n+3)(π/2))−sin(0)] sin((2n+3)(π/2))=sin((n+1)π + (π/2)) sin(t+π)=cos(π)sin(t)+sin(π)cos(t)= =−sin(t) ⇒sin((n+1)π + (π/2))=(−1)^(n+1) sin(π/2)=(−1)^(n+1) ⇒u_(n+1) −u_n =((2(−1)^(n+1) )/(2n+3)) ⇒Σ_(k=0) ^n u_(k+1) −u_k =u_(n+1) −u_0 =2Σ_(k=0) ^n (((−1)^(k+1) )/(2k+3)) u_0 =∫_0 ^(π/2) ((sin(2x))/(sin(x)))dx=2∫_0 ^(π/2) cos(x)dx=2 ⇒u_n =2Σ_(k=−1) ^(n−1) (((−1)^(k+1) )/(2k+3))=2Σ_(k=0−1) ^(n−1) (((−1)^(k+1) )/(2(k+1)+1)) ⇒u_n =Σ_(k=0) ^n ((2(−1)^k )/(2k+1)) lim_(n→∞) u_n =2Σ_(k=0) ^∞ (((−1)^k )/(2k+1))=2(π/4)=(π/2) Ans. u_∞ =π/2](https://www.tinkutara.com/question/Q41605.png)