Menu Close

let-f-n-x-sin-2-n-1-x-sinx-if-x-0-pi-2-and-f-n-0-2-n-1-let-u-n-0-pi-2-f-n-x-dx-1-prove-that-n-fromN-u-n-1-u-n-2-1-n-1-2n-3-2-find-lim-n-u-n-




Question Number 41515 by maxmathsup by imad last updated on 08/Aug/18
let  f_n (x) =((sin(2(n+1)x))/(sinx)) if  x∈]0,(π/2)] and f_n (0)=2(n+1)  let  u_n = ∫_0 ^(π/2)  f_n (x)dx  1) prove that  ∀n fromN  u_(n+1) −u_n =2(((−1)^(n+1) )/(2n+3))  2)find lim_(n→+∞)  u_n
letfn(x)=sin(2(n+1)x)sinxifx]0,π2]andfn(0)=2(n+1)letun=0π2fn(x)dx1)provethatnfromNun+1un=2(1)n+12n+32)findlimn+un
Commented by maxmathsup by imad last updated on 12/Aug/18
1) u_(n+1) −u_n =∫_0 ^(π/2)    ((sin(2(n+2)x)−sin(2(n+1)x))/(sinx))dx but  sinp−sinq =cos((π/2)−p)  +cos((π/2)+q) =2 cos(((π−p+q)/2))cos(((−p−q)/2))  = 2cos((π/2) −((p−q)/2))cos(((p+q)/2))=2sin(((p−q)/2))cos(((p+q)/2)) ⇒  sin(2(n+2)x)−sin(2(n+1)x)=2sin(x)cos((((4n+6)x)/2))⇒  u_(n+1) −u_n =2∫_0 ^(π/2)   sin(x)cos((2n+3)x) .(1/(sinx)) dx  = 2∫_0 ^(π/2)  cos{(2n+3)x}dx =2[(1/(2n +3)) sin{(2n+3)x}]_0 ^(π/2)   =(2/(2n+3))sin{(2n+3)(π/2)} =(2/(2n+3)) sin(nπ +2π−(π/2))  =−(2/(2n +3)) sin((π/2) −nπ) =−(2/(2n+3))cos(nπ) =2((−(−1)^n )/(2n+3)) =2(((−1)^(n+1) )/(2n+3)) ⇒  u_(n+1)  −u_n =2(((−1)^(n+1) )/(2n+3))
1)un+1un=0π2sin(2(n+2)x)sin(2(n+1)x)sinxdxbutsinpsinq=cos(π2p)+cos(π2+q)=2cos(πp+q2)cos(pq2)=2cos(π2pq2)cos(p+q2)=2sin(pq2)cos(p+q2)sin(2(n+2)x)sin(2(n+1)x)=2sin(x)cos((4n+6)x2)un+1un=20π2sin(x)cos((2n+3)x).1sinxdx=20π2cos{(2n+3)x}dx=2[12n+3sin{(2n+3)x}]0π2=22n+3sin{(2n+3)π2}=22n+3sin(nπ+2ππ2)=22n+3sin(π2nπ)=22n+3cos(nπ)=2(1)n2n+3=2(1)n+12n+3un+1un=2(1)n+12n+3
Commented by maxmathsup by imad last updated on 12/Aug/18
2) we have Σ_(k=0) ^(n−1) (u_(k+1)  −u_k ) =2 Σ_(k=0) ^(n−1)   (((−1)^(k+1) )/(2k+3)) ⇒  u_n −u_0 = 2 Σ_(k=0) ^(n−1)   (((−1)^(k+1) )/(2k+3))   (   j=k+1)  =2 Σ_(j=1) ^n    (((−1)^j )/(2j+1))  ⇒ lim_(n→+∞)  u_n =u_0   +2 Σ_(j=1) ^∞    (((−1)^j )/(2j+1))  = u_0   + 2Σ_(j=0) ^∞     (((−1)^j )/(2j+1)) −2 =u_0  −2 + 2(π/4) =(π/2) +u_0  −2  but  u_0 =∫_0 ^(π/2)  2 dx =π ⇒lim_(n→+∞)    u_n =((3π)/2) −2 .
2)wehavek=0n1(uk+1uk)=2k=0n1(1)k+12k+3unu0=2k=0n1(1)k+12k+3(j=k+1)=2j=1n(1)j2j+1limn+un=u0+2j=1(1)j2j+1=u0+2j=0(1)j2j+12=u02+2π4=π2+u02butu0=0π22dx=πlimn+un=3π22.
Commented by math khazana by abdo last updated on 13/Aug/18
u_0 = ∫_0 ^(π/2)    ((sin(2x))/(sinx)) dx =2 ∫_0 ^(π/2)  cosx dx=2 ⇒  lim_(n→+∞)    u_n =2−2 +((2π)/4) ⇒  lim_(n→+∞) u_n =(π/2) .
u0=0π2sin(2x)sinxdx=20π2cosxdx=2limn+un=22+2π4limn+un=π2.
Answered by alex041103 last updated on 10/Aug/18
We know that:  sin(2(n+2)x)=sin(2(n+1)x+2x)=  =cos(2x)sin(2(n+1)x)+sin(2x)cos(2(n+1)x)  cos(2x)=1−2sin^2 x  sin(2x)=2sin(x)cos(x)  ⇒u_(n+1) =∫_0 ^(π/2) (((1−2sin^2 x)sin(2(n+1)x))/(sin(x)))dx+∫_0 ^(π/2) ((2sin(x)cos(x)cos(2(n+1)x))/(sin(x)))dx  =u_n +2∫_0 ^(π/2) (cos(x)cos(2(n+1)x)−sin(x)sin(2(n+1)x))dx=  ⇒u_(n+1) −u_n =2∫cos((2n+3)x)dx=  =(2/(2n+3))∫cos((2n+3)x)d((2n+3)x)=  =(2/(2n+1))[sin((2n+3)(π/2))−sin(0)]  sin((2n+3)(π/2))=sin((n+1)π + (π/2))  sin(t+π)=cos(π)sin(t)+sin(π)cos(t)=  =−sin(t)  ⇒sin((n+1)π + (π/2))=(−1)^(n+1) sin(π/2)=(−1)^(n+1)   ⇒u_(n+1) −u_n =((2(−1)^(n+1) )/(2n+3))  ⇒Σ_(k=0) ^n u_(k+1) −u_k =u_(n+1) −u_0 =2Σ_(k=0) ^n (((−1)^(k+1) )/(2k+3))  u_0 =∫_0 ^(π/2) ((sin(2x))/(sin(x)))dx=2∫_0 ^(π/2) cos(x)dx=2  ⇒u_n =2Σ_(k=−1) ^(n−1) (((−1)^(k+1) )/(2k+3))=2Σ_(k=0−1) ^(n−1) (((−1)^(k+1) )/(2(k+1)+1))  ⇒u_n =Σ_(k=0) ^n ((2(−1)^k )/(2k+1))  lim_(n→∞) u_n =2Σ_(k=0) ^∞ (((−1)^k )/(2k+1))=2(π/4)=(π/2)  Ans. u_∞ =π/2
Weknowthat:sin(2(n+2)x)=sin(2(n+1)x+2x)==cos(2x)sin(2(n+1)x)+sin(2x)cos(2(n+1)x)cos(2x)=12sin2xsin(2x)=2sin(x)cos(x)un+1=0π/2(12sin2x)sin(2(n+1)x)sin(x)dx+0π/22sin(x)cos(x)cos(2(n+1)x)sin(x)dx=un+20π/2(cos(x)cos(2(n+1)x)sin(x)sin(2(n+1)x))dx=un+1un=2cos((2n+3)x)dx==22n+3cos((2n+3)x)d((2n+3)x)==22n+1[sin((2n+3)π2)sin(0)]sin((2n+3)π2)=sin((n+1)π+π2)sin(t+π)=cos(π)sin(t)+sin(π)cos(t)==sin(t)sin((n+1)π+π2)=(1)n+1sin(π/2)=(1)n+1un+1un=2(1)n+12n+3nk=0uk+1uk=un+1u0=2nk=0(1)k+12k+3u0=0π/2sin(2x)sin(x)dx=20π/2cos(x)dx=2un=2n1k=1(1)k+12k+3=2n1k=01(1)k+12(k+1)+1un=nk=02(1)k2k+1Double subscripts: use braces to clarifyAns.u=π/2

Leave a Reply

Your email address will not be published. Required fields are marked *