Menu Close

let-f-n-x-sin-2-n-1-x-sinx-if-x-0-pi-2-and-f-n-0-2-n-1-let-u-n-0-pi-2-f-n-x-dx-1-prove-that-n-fromN-u-n-1-u-n-2-1-n-1-2n-3-2-find-lim-n-u-n-




Question Number 41515 by maxmathsup by imad last updated on 08/Aug/18
let  f_n (x) =((sin(2(n+1)x))/(sinx)) if  x∈]0,(π/2)] and f_n (0)=2(n+1)  let  u_n = ∫_0 ^(π/2)  f_n (x)dx  1) prove that  ∀n fromN  u_(n+1) −u_n =2(((−1)^(n+1) )/(2n+3))  2)find lim_(n→+∞)  u_n
$$\left.{l}\left.{et}\:\:{f}_{{n}} \left({x}\right)\:=\frac{{sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)}{{sinx}}\:{if}\:\:{x}\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:{and}\:{f}_{{n}} \left(\mathrm{0}\right)=\mathrm{2}\left({n}+\mathrm{1}\right)\:\:{let} \\ $$$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{f}_{{n}} \left({x}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\forall{n}\:{fromN}\:\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} =\mathrm{2}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{3}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 12/Aug/18
1) u_(n+1) −u_n =∫_0 ^(π/2)    ((sin(2(n+2)x)−sin(2(n+1)x))/(sinx))dx but  sinp−sinq =cos((π/2)−p)  +cos((π/2)+q) =2 cos(((π−p+q)/2))cos(((−p−q)/2))  = 2cos((π/2) −((p−q)/2))cos(((p+q)/2))=2sin(((p−q)/2))cos(((p+q)/2)) ⇒  sin(2(n+2)x)−sin(2(n+1)x)=2sin(x)cos((((4n+6)x)/2))⇒  u_(n+1) −u_n =2∫_0 ^(π/2)   sin(x)cos((2n+3)x) .(1/(sinx)) dx  = 2∫_0 ^(π/2)  cos{(2n+3)x}dx =2[(1/(2n +3)) sin{(2n+3)x}]_0 ^(π/2)   =(2/(2n+3))sin{(2n+3)(π/2)} =(2/(2n+3)) sin(nπ +2π−(π/2))  =−(2/(2n +3)) sin((π/2) −nπ) =−(2/(2n+3))cos(nπ) =2((−(−1)^n )/(2n+3)) =2(((−1)^(n+1) )/(2n+3)) ⇒  u_(n+1)  −u_n =2(((−1)^(n+1) )/(2n+3))
$$\left.\mathrm{1}\right)\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sin}\left(\mathrm{2}\left({n}+\mathrm{2}\right){x}\right)−{sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)}{{sinx}}{dx}\:{but} \\ $$$${sinp}−{sinq}\:={cos}\left(\frac{\pi}{\mathrm{2}}−{p}\right)\:\:+{cos}\left(\frac{\pi}{\mathrm{2}}+{q}\right)\:=\mathrm{2}\:{cos}\left(\frac{\pi−{p}+{q}}{\mathrm{2}}\right){cos}\left(\frac{−{p}−{q}}{\mathrm{2}}\right) \\ $$$$=\:\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{2}}\:−\frac{{p}−{q}}{\mathrm{2}}\right){cos}\left(\frac{{p}+{q}}{\mathrm{2}}\right)=\mathrm{2}{sin}\left(\frac{{p}−{q}}{\mathrm{2}}\right){cos}\left(\frac{{p}+{q}}{\mathrm{2}}\right)\:\Rightarrow \\ $$$${sin}\left(\mathrm{2}\left({n}+\mathrm{2}\right){x}\right)−{sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)=\mathrm{2}{sin}\left({x}\right){cos}\left(\frac{\left(\mathrm{4}{n}+\mathrm{6}\right){x}}{\mathrm{2}}\right)\Rightarrow \\ $$$${u}_{{n}+\mathrm{1}} −{u}_{{n}} =\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{sin}\left({x}\right){cos}\left(\left(\mathrm{2}{n}+\mathrm{3}\right){x}\right)\:.\frac{\mathrm{1}}{{sinx}}\:{dx} \\ $$$$=\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left\{\left(\mathrm{2}{n}+\mathrm{3}\right){x}\right\}{dx}\:=\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}{n}\:+\mathrm{3}}\:{sin}\left\{\left(\mathrm{2}{n}+\mathrm{3}\right){x}\right\}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{3}}{sin}\left\{\left(\mathrm{2}{n}+\mathrm{3}\right)\frac{\pi}{\mathrm{2}}\right\}\:=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{3}}\:{sin}\left({n}\pi\:+\mathrm{2}\pi−\frac{\pi}{\mathrm{2}}\right) \\ $$$$=−\frac{\mathrm{2}}{\mathrm{2}{n}\:+\mathrm{3}}\:{sin}\left(\frac{\pi}{\mathrm{2}}\:−{n}\pi\right)\:=−\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{3}}{cos}\left({n}\pi\right)\:=\mathrm{2}\frac{−\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{3}}\:=\mathrm{2}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{3}}\:\Rightarrow \\ $$$${u}_{{n}+\mathrm{1}} \:−{u}_{{n}} =\mathrm{2}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{3}} \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 12/Aug/18
2) we have Σ_(k=0) ^(n−1) (u_(k+1)  −u_k ) =2 Σ_(k=0) ^(n−1)   (((−1)^(k+1) )/(2k+3)) ⇒  u_n −u_0 = 2 Σ_(k=0) ^(n−1)   (((−1)^(k+1) )/(2k+3))   (   j=k+1)  =2 Σ_(j=1) ^n    (((−1)^j )/(2j+1))  ⇒ lim_(n→+∞)  u_n =u_0   +2 Σ_(j=1) ^∞    (((−1)^j )/(2j+1))  = u_0   + 2Σ_(j=0) ^∞     (((−1)^j )/(2j+1)) −2 =u_0  −2 + 2(π/4) =(π/2) +u_0  −2  but  u_0 =∫_0 ^(π/2)  2 dx =π ⇒lim_(n→+∞)    u_n =((3π)/2) −2 .
$$\left.\mathrm{2}\right)\:{we}\:{have}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({u}_{{k}+\mathrm{1}} \:−{u}_{{k}} \right)\:=\mathrm{2}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}{k}+\mathrm{3}}\:\Rightarrow \\ $$$${u}_{{n}} −{u}_{\mathrm{0}} =\:\mathrm{2}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}{k}+\mathrm{3}}\:\:\:\left(\:\:\:{j}={k}+\mathrm{1}\right) \\ $$$$=\mathrm{2}\:\sum_{{j}=\mathrm{1}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{j}} }{\mathrm{2}{j}+\mathrm{1}}\:\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} ={u}_{\mathrm{0}} \:\:+\mathrm{2}\:\sum_{{j}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{j}} }{\mathrm{2}{j}+\mathrm{1}} \\ $$$$=\:{u}_{\mathrm{0}} \:\:+\:\mathrm{2}\sum_{{j}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{j}} }{\mathrm{2}{j}+\mathrm{1}}\:−\mathrm{2}\:={u}_{\mathrm{0}} \:−\mathrm{2}\:+\:\mathrm{2}\frac{\pi}{\mathrm{4}}\:=\frac{\pi}{\mathrm{2}}\:+{u}_{\mathrm{0}} \:−\mathrm{2}\:\:{but} \\ $$$${u}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{2}\:{dx}\:=\pi\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:\:\:{u}_{{n}} =\frac{\mathrm{3}\pi}{\mathrm{2}}\:−\mathrm{2}\:. \\ $$
Commented by math khazana by abdo last updated on 13/Aug/18
u_0 = ∫_0 ^(π/2)    ((sin(2x))/(sinx)) dx =2 ∫_0 ^(π/2)  cosx dx=2 ⇒  lim_(n→+∞)    u_n =2−2 +((2π)/4) ⇒  lim_(n→+∞) u_n =(π/2) .
$${u}_{\mathrm{0}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{sinx}}\:{dx}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cosx}\:{dx}=\mathrm{2}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:\:{u}_{{n}} =\mathrm{2}−\mathrm{2}\:+\frac{\mathrm{2}\pi}{\mathrm{4}}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} {u}_{{n}} =\frac{\pi}{\mathrm{2}}\:. \\ $$
Answered by alex041103 last updated on 10/Aug/18
We know that:  sin(2(n+2)x)=sin(2(n+1)x+2x)=  =cos(2x)sin(2(n+1)x)+sin(2x)cos(2(n+1)x)  cos(2x)=1−2sin^2 x  sin(2x)=2sin(x)cos(x)  ⇒u_(n+1) =∫_0 ^(π/2) (((1−2sin^2 x)sin(2(n+1)x))/(sin(x)))dx+∫_0 ^(π/2) ((2sin(x)cos(x)cos(2(n+1)x))/(sin(x)))dx  =u_n +2∫_0 ^(π/2) (cos(x)cos(2(n+1)x)−sin(x)sin(2(n+1)x))dx=  ⇒u_(n+1) −u_n =2∫cos((2n+3)x)dx=  =(2/(2n+3))∫cos((2n+3)x)d((2n+3)x)=  =(2/(2n+1))[sin((2n+3)(π/2))−sin(0)]  sin((2n+3)(π/2))=sin((n+1)π + (π/2))  sin(t+π)=cos(π)sin(t)+sin(π)cos(t)=  =−sin(t)  ⇒sin((n+1)π + (π/2))=(−1)^(n+1) sin(π/2)=(−1)^(n+1)   ⇒u_(n+1) −u_n =((2(−1)^(n+1) )/(2n+3))  ⇒Σ_(k=0) ^n u_(k+1) −u_k =u_(n+1) −u_0 =2Σ_(k=0) ^n (((−1)^(k+1) )/(2k+3))  u_0 =∫_0 ^(π/2) ((sin(2x))/(sin(x)))dx=2∫_0 ^(π/2) cos(x)dx=2  ⇒u_n =2Σ_(k=−1) ^(n−1) (((−1)^(k+1) )/(2k+3))=2Σ_(k=0−1) ^(n−1) (((−1)^(k+1) )/(2(k+1)+1))  ⇒u_n =Σ_(k=0) ^n ((2(−1)^k )/(2k+1))  lim_(n→∞) u_n =2Σ_(k=0) ^∞ (((−1)^k )/(2k+1))=2(π/4)=(π/2)  Ans. u_∞ =π/2
$${We}\:{know}\:{that}: \\ $$$${sin}\left(\mathrm{2}\left({n}+\mathrm{2}\right){x}\right)={sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}+\mathrm{2}{x}\right)= \\ $$$$={cos}\left(\mathrm{2}{x}\right){sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)+{sin}\left(\mathrm{2}{x}\right){cos}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right) \\ $$$${cos}\left(\mathrm{2}{x}\right)=\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} {x} \\ $$$${sin}\left(\mathrm{2}{x}\right)=\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right) \\ $$$$\Rightarrow{u}_{{n}+\mathrm{1}} =\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} {x}\right){sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)}{{sin}\left({x}\right)}{dx}+\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right){cos}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)}{{sin}\left({x}\right)}{dx} \\ $$$$={u}_{{n}} +\mathrm{2}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left({cos}\left({x}\right){cos}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)−{sin}\left({x}\right){sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)\right){dx}= \\ $$$$\Rightarrow{u}_{{n}+\mathrm{1}} −{u}_{{n}} =\mathrm{2}\int{cos}\left(\left(\mathrm{2}{n}+\mathrm{3}\right){x}\right){dx}= \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{3}}\int{cos}\left(\left(\mathrm{2}{n}+\mathrm{3}\right){x}\right){d}\left(\left(\mathrm{2}{n}+\mathrm{3}\right){x}\right)= \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}\left[{sin}\left(\left(\mathrm{2}{n}+\mathrm{3}\right)\frac{\pi}{\mathrm{2}}\right)−{sin}\left(\mathrm{0}\right)\right] \\ $$$${sin}\left(\left(\mathrm{2}{n}+\mathrm{3}\right)\frac{\pi}{\mathrm{2}}\right)={sin}\left(\left({n}+\mathrm{1}\right)\pi\:+\:\frac{\pi}{\mathrm{2}}\right) \\ $$$${sin}\left({t}+\pi\right)={cos}\left(\pi\right){sin}\left({t}\right)+{sin}\left(\pi\right){cos}\left({t}\right)= \\ $$$$=−{sin}\left({t}\right) \\ $$$$\Rightarrow{sin}\left(\left({n}+\mathrm{1}\right)\pi\:+\:\frac{\pi}{\mathrm{2}}\right)=\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {sin}\left(\pi/\mathrm{2}\right)=\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \\ $$$$\Rightarrow{u}_{{n}+\mathrm{1}} −{u}_{{n}} =\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{3}} \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{u}_{{k}+\mathrm{1}} −{u}_{{k}} ={u}_{{n}+\mathrm{1}} −{u}_{\mathrm{0}} =\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}{k}+\mathrm{3}} \\ $$$${u}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{sin}\left(\mathrm{2}{x}\right)}{{sin}\left({x}\right)}{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {cos}\left({x}\right){dx}=\mathrm{2} \\ $$$$\Rightarrow{u}_{{n}} =\mathrm{2}\underset{{k}=−\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}{k}+\mathrm{3}}=\mathrm{2}\underset{{k}=\mathrm{0}−\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}\left({k}+\mathrm{1}\right)+\mathrm{1}} \\ $$$$\Rightarrow{u}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$$$\underset{{n}\rightarrow\infty} {{lim}u}_{{n}} =\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}=\mathrm{2}\frac{\pi}{\mathrm{4}}=\frac{\pi}{\mathrm{2}} \\ $$$${Ans}.\:{u}_{\infty} =\pi/\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *