Menu Close

let-f-n-x-sin-nx-n-3-and-f-x-n-1-f-n-x-calculate-0-pi-f-x-dx-




Question Number 52680 by maxmathsup by imad last updated on 11/Jan/19
let f_n (x)=((sin(nx))/n^3 )   and f(x)=Σ_(n=1) ^∞  f_n (x)  calculate ∫_0 ^π  f(x)dx .
letfn(x)=sin(nx)n3andf(x)=n=1fn(x)calculate0πf(x)dx.
Commented by maxmathsup by imad last updated on 11/Jan/19
its clear that the serie Σ f_n (x) converge simpl.and unif. because  ∣f_n (x)∣≤(1/n^3 )  and Σ (1/n^3 ) converges  we have  ∫_0 ^π f(x)dx =∫_0 ^π Σ_(n=1) ^∞    ((sin(nx))/n^3 ) =Σ_(n=1) ^∞  (1/n^3 ) ∫_0 ^π  sin(nx)dx  =Σ_(n=1) ^∞  (1/n^3 )[−(1/n)cos(nx)]_0 ^π  =Σ_(n=1) ^∞  (1/n^4 )(1−(−1)^n )  =2 Σ_(n=0) ^∞   (1/((2n+1)^4 ))  but we have proved that Σ_(n=1) ^∞  (1/n^4 ) =(π^4 /(90)) ⇒  Σ_(n=0) ^∞  (1/((2n+1)^4 )) + (1/(16))Σ_(n=1) ^∞   (1/n^4 ) =(π^4 /(90)) ⇒Σ_(n=0) ^∞  (1/((2n+1)^4 )) =(π^4 /(90)) −(1/(16)) (π^4 /(90))  =(1−(1/(16)))(π^4 /(90)) =((15)/(16)) (π^4 /(90)) =((3.5)/(3.30 16)) π^4  =(π^4 /(6.16)) =(π^4 /(96)) ⇒  ∫_0 ^π f(x)dx =2 .(π^4 /(96)) ⇒ ∫_0 ^π f(x)dx =(π^4 /(48)) .
itsclearthattheserieΣfn(x)convergesimpl.andunif.becausefn(x)∣⩽1n3andΣ1n3convergeswehave0πf(x)dx=0πn=1sin(nx)n3=n=11n30πsin(nx)dx=n=11n3[1ncos(nx)]0π=n=11n4(1(1)n)=2n=01(2n+1)4butwehaveprovedthatn=11n4=π490n=01(2n+1)4+116n=11n4=π490n=01(2n+1)4=π490116π490=(1116)π490=1516π490=3.53.3016π4=π46.16=π4960πf(x)dx=2.π4960πf(x)dx=π448.

Leave a Reply

Your email address will not be published. Required fields are marked *