let-f-n-x-sin-nx-n-3-and-f-x-n-1-f-n-x-calculate-0-pi-f-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 52680 by maxmathsup by imad last updated on 11/Jan/19 letfn(x)=sin(nx)n3andf(x)=∑n=1∞fn(x)calculate∫0πf(x)dx. Commented by maxmathsup by imad last updated on 11/Jan/19 itsclearthattheserieΣfn(x)convergesimpl.andunif.because∣fn(x)∣⩽1n3andΣ1n3convergeswehave∫0πf(x)dx=∫0π∑n=1∞sin(nx)n3=∑n=1∞1n3∫0πsin(nx)dx=∑n=1∞1n3[−1ncos(nx)]0π=∑n=1∞1n4(1−(−1)n)=2∑n=0∞1(2n+1)4butwehaveprovedthat∑n=1∞1n4=π490⇒∑n=0∞1(2n+1)4+116∑n=1∞1n4=π490⇒∑n=0∞1(2n+1)4=π490−116π490=(1−116)π490=1516π490=3.53.3016π4=π46.16=π496⇒∫0πf(x)dx=2.π496⇒∫0πf(x)dx=π448. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-u-n-ln-cos-2-n-calculate-n-0-u-n-Next Next post: find-nature-of-the-serie-n-1-n-1-n-nln-n-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.