Menu Close

Let-f-R-1-be-defined-as-f-x-log-10-3x-2-4x-k-1-10-If-f-x-is-surjective-then-find-the-value-of-k-




Question Number 33818 by rahul 19 last updated on 25/Apr/18
Let f:R → [ 1, ∞) be defined as   f(x) = log_(10)  ((√(3x^2 −4x+k+1)) +10 ).  If f(x) is surjective , then find  the value of k ?
Letf:R[1,)bedefinedasf(x)=log10(3x24x+k+1+10).Iff(x)issurjective,thenfindthevalueofk?
Answered by MJS last updated on 26/Apr/18
this one′s easier  (√(3x^2 −4x+k+1)) must be a real number  and must have exactly one zero  (2 distinct zeros ⇒ f(x) not defined for  some x∈R; no zeros ⇒ min(f(x))>1)  3x^2 −4x+k+1=0  x^2 −(4/3)x+((k+1)/3)=0  x=(2/3)±((√(1−3k))/3)  1−3k=0 ⇒ k=(1/3)
thisoneseasier3x24x+k+1mustbearealnumberandmusthaveexactlyonezero(2distinctzerosf(x)notdefinedforsomexR;nozerosmin(f(x))>1)3x24x+k+1=0x243x+k+13=0x=23±13k313k=0k=13
Commented by rahul 19 last updated on 28/Apr/18
pls  explain one more time.  If f(x) has exactly one zero then  it will not be defined for that x i.e  will not be sujective ..... ??  for eg: if it becomes (x−2)   then f(x) is not defined at x=2 ?
plsexplainonemoretime.Iff(x)hasexactlyonezerothenitwillnotbedefinedforthatxi.ewillnotbesujective..??foreg:ifitbecomes(x2)thenf(x)isnotdefinedatx=2?
Commented by MJS last updated on 28/Apr/18
not f(x), I only talk about the root  f(x)=log_(10)  ((√(g(x)))+10)  g(x) has  { ((no zero ⇒ (√(g(x)))>0 ∧ f(x)>1 ∀x∈R ⇒)),((⇒ ∃y∈[1; ∞[: y≠f(x)∀x∈R)),((1 zero p ⇒ (√(g(p)))=0 ⇒ f(p)=1 ⇒)),((⇒ ∀y∈[1; ∞[: ∃x∈R: y=f(x) ⇒ f(x) is surjective)),((2 zeros p, q ⇒ (√(g(x)))∉R ∀x∈]p; q[ ⇒)),((⇒ D=R\x≠R ∀x∈]p; q[)) :}
notf(x),Ionlytalkabouttherootf(x)=log10(g(x)+10)g(x)has{nozerog(x)>0f(x)>1xRy[1;[:yf(x)xR1zeropg(p)=0f(p)=1y[1;[:xR:y=f(x)f(x)issurjective2zerosp,qg(x)Rx]p;q[D=RxRx]p;q[
Commented by rahul 19 last updated on 29/Apr/18
Thank you sir.
Thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *