Menu Close

Let-f-R-3-5-R-be-defined-by-f-x-3x-2-5x-3-Then-a-f-1-x-x-b-f-1-x-f-x-c-fof-x-x-d-f-1-x-1-19-f-x-




Question Number 13601 by Tinkutara last updated on 21/May/17
Let f : R − {(3/5)} → R be defined by  f(x) = ((3x + 2)/(5x − 3)) . Then,  (a) f^(−1) (x) = x  (b) f^(−1) (x) = −f(x)  (c) fof(x) = −x  (d) f^(−1) (x) = (1/(19))f(x)
$$\mathrm{Let}\:{f}\::\:\mathbb{R}\:−\:\left\{\frac{\mathrm{3}}{\mathrm{5}}\right\}\:\rightarrow\:\mathbb{R}\:\mathrm{be}\:\mathrm{defined}\:\mathrm{by} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{3}{x}\:+\:\mathrm{2}}{\mathrm{5}{x}\:−\:\mathrm{3}}\:.\:\mathrm{Then}, \\ $$$$\left(\mathrm{a}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:{x} \\ $$$$\left(\mathrm{b}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:−{f}\left({x}\right) \\ $$$$\left(\mathrm{c}\right)\:{fof}\left({x}\right)\:=\:−{x} \\ $$$$\left(\mathrm{d}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{19}}{f}\left({x}\right) \\ $$
Answered by mrW1 last updated on 21/May/17
y = ((3x + 2)/(5x − 3))  5yx−3y=3x+2  (5y−3)x=3y+2  x=((3y+2)/(5y−3))  ⇒f^(−1) (x)=((3x+2)/(5x−3))=f(x)  fof(x)=((3(((3x+2)/(5x−3)))+2)/(5(((3x+2)/(5x−3)))−3))=((9x+6+10x−6)/(15x+10−15x+9))=((19x)/(19))=x    no answer seems to be true...
$${y}\:=\:\frac{\mathrm{3}{x}\:+\:\mathrm{2}}{\mathrm{5}{x}\:−\:\mathrm{3}} \\ $$$$\mathrm{5}{yx}−\mathrm{3}{y}=\mathrm{3}{x}+\mathrm{2} \\ $$$$\left(\mathrm{5}{y}−\mathrm{3}\right){x}=\mathrm{3}{y}+\mathrm{2} \\ $$$${x}=\frac{\mathrm{3}{y}+\mathrm{2}}{\mathrm{5}{y}−\mathrm{3}} \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{3}{x}+\mathrm{2}}{\mathrm{5}{x}−\mathrm{3}}={f}\left({x}\right) \\ $$$${fof}\left({x}\right)=\frac{\mathrm{3}\left(\frac{\mathrm{3}{x}+\mathrm{2}}{\mathrm{5}{x}−\mathrm{3}}\right)+\mathrm{2}}{\mathrm{5}\left(\frac{\mathrm{3}{x}+\mathrm{2}}{\mathrm{5}{x}−\mathrm{3}}\right)−\mathrm{3}}=\frac{\mathrm{9}{x}+\mathrm{6}+\mathrm{10}{x}−\mathrm{6}}{\mathrm{15}{x}+\mathrm{10}−\mathrm{15}{x}+\mathrm{9}}=\frac{\mathrm{19}{x}}{\mathrm{19}}={x} \\ $$$$ \\ $$$${no}\:{answer}\:{seems}\:{to}\:{be}\:{true}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *