Menu Close

let-f-R-R-be-a-continuius-function-such-that-for-any-two-real-numbers-x-and-y-f-x-f-y-10-x-y-201-then-prove-that-f-2019-f-2022-2-f-2021-




Question Number 148990 by gsk2684 last updated on 02/Aug/21
let f:R→R be a continuius function  such that for any two real numbers  x and y ∣f(x)−f(y)∣≤10∣x−y∣^(201)   then prove that  f(2019)+f(2022)=2 f(2021)
$${let}\:{f}:{R}\rightarrow{R}\:{be}\:{a}\:{continuius}\:{function} \\ $$$${such}\:{that}\:{for}\:{any}\:{two}\:{real}\:{numbers} \\ $$$${x}\:{and}\:{y}\:\mid{f}\left({x}\right)−{f}\left({y}\right)\mid\leqslant\mathrm{10}\mid{x}−{y}\mid^{\mathrm{201}} \\ $$$${then}\:{prove}\:{that} \\ $$$${f}\left(\mathrm{2019}\right)+{f}\left(\mathrm{2022}\right)=\mathrm{2}\:{f}\left(\mathrm{2021}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *