Menu Close

Let-f-R-R-be-a-function-satisfying-the-following-a-f-x-f-x-b-f-x-1-f-x-1-c-f-1-x-f-x-x-2-for-all-x-0-Show-that-i-f-x-x-for-all-x-y-R-ii-f-x-y-f-x-f-y-for-all-x-y-R-iii




Question Number 117603 by Ar Brandon last updated on 12/Oct/20
Let f : R→R be a function satisfying the following :  (a) f(−x)=−f(x)  (b) f(x+1)=f(x)+1  (c) f((1/x))=((f(x))/x^2 ) for all x≠0  Show that  (i)f(x)=x for all x,y∈R  (ii) f(x+y)=f(x)+f(y) for all x,y∈R  (iii) f(xy)=f(x)f(y) for all x,y∈R  (iv) f((x/y))=((f(x))/(f(y))) for all x,y∈R with y≠0
$$\mathrm{Let}\:\mathrm{f}\::\:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{function}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{following}\:: \\ $$$$\left(\mathrm{a}\right)\:{f}\left(−{x}\right)=−{f}\left({x}\right) \\ $$$$\left(\mathrm{b}\right)\:{f}\left({x}+\mathrm{1}\right)={f}\left({x}\right)+\mathrm{1} \\ $$$$\left(\mathrm{c}\right)\:{f}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{{f}\left({x}\right)}{{x}^{\mathrm{2}} }\:\mathrm{for}\:\mathrm{all}\:{x}\neq\mathrm{0} \\ $$$$\mathrm{Show}\:\mathrm{that} \\ $$$$\left(\mathrm{i}\right){f}\left({x}\right)={x}\:\mathrm{for}\:\mathrm{all}\:{x},\mathrm{y}\in\mathbb{R} \\ $$$$\left(\mathrm{ii}\right)\:{f}\left({x}+{y}\right)={f}\left({x}\right)+{f}\left(\mathrm{y}\right)\:\mathrm{for}\:\mathrm{all}\:{x},\mathrm{y}\in\mathbb{R} \\ $$$$\left(\mathrm{iii}\right)\:{f}\left({xy}\right)={f}\left({x}\right){f}\left(\mathrm{y}\right)\:\mathrm{for}\:\mathrm{all}\:{x},\mathrm{y}\in\mathbb{R} \\ $$$$\left(\mathrm{iv}\right)\:{f}\left(\frac{{x}}{\mathrm{y}}\right)=\frac{{f}\left({x}\right)}{{f}\left(\mathrm{y}\right)}\:\mathrm{for}\:\mathrm{all}\:{x},\mathrm{y}\in\mathbb{R}\:\mathrm{with}\:\mathrm{y}\neq\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *