Menu Close

Let-f-R-R-be-a-function-satisfying-the-functional-relation-f-x-y-f-y-x-2f-xy-for-all-x-y-R-and-it-is-given-that-f-1-1-2-Answer-the-following-questions-i-f-




Question Number 120325 by Ar Brandon last updated on 30/Oct/20
Let f:R→R be a function satisfying the  functional relation                            (f(x))^y +(f(y))^x =2f(xy)  for all x, y ∈R and it is given that f(1)=1/2. Answer  the following questions.  (i)    f(x+y)=           (A) f(x)+f(y)                               (B)  f(x)f(y)           (C) f(x^y y^x )                                     (D)   ((f(x))/(f(y)))  (ii)    f(xy)=            (A) f(x)f(y)                               (B) f(x)+f(y)           (C) (f(x))^y                                      (D)  (f(xy))^(xy)   (iii)  Σ_(k=0) ^∞ f(k)=             (A) 5/2                (B) 3/2                (C) 3                (D) 2
Letf:RRbeafunctionsatisfyingthefunctionalrelation(f(x))y+(f(y))x=2f(xy)forallx,yRanditisgiventhatf(1)=1/2.Answerthefollowingquestions.(i)f(x+y)=(A)f(x)+f(y)(B)f(x)f(y)(C)f(xyyx)(D)f(x)f(y)(ii)f(xy)=(A)f(x)f(y)(B)f(x)+f(y)(C)(f(x))y(D)(f(xy))xy(iii)k=0f(k)=(A)5/2(B)3/2(C)3(D)2
Commented by Dwaipayan Shikari last updated on 30/Oct/20
f(x)=(Ce)^x   f(x+y)=(Ce)^(x+y) =C^x e^x .C^y e^y =f(x)f(y)  f(xy)=C^(xy) e^(xy) =(f(x))^y   f(1)=Ce=(1/2)⇒C=(1/(2e))  Σ_(k=0) ^∞ f(k)=1+(1/2^1 )+(1/2^2 )+...=(1/(1−(1/2)))=2
f(x)=(Ce)xf(x+y)=(Ce)x+y=Cxex.Cyey=f(x)f(y)f(xy)=Cxyexy=(f(x))yf(1)=Ce=12C=12ek=0f(k)=1+121+122+=1112=2
Commented by Ar Brandon last updated on 30/Oct/20
Wow ! Thanks bro. Are there any    calculations to get f(x)=(Ce)^x  ?
Wow!Thanksbro.Arethereanycalculationstogetf(x)=(Ce)x?
Commented by Dwaipayan Shikari last updated on 30/Oct/20
I just assumed it
Ijustassumedit
Commented by mindispower last updated on 30/Oct/20
f(x)^y +f(y)^x =2f(xy),x=1  ⇒f(1)^y +f(y)=2f(y)  f(y)=f(1)^y =(1/2^y )
f(x)y+f(y)x=2f(xy),x=1f(1)y+f(y)=2f(y)f(y)=f(1)y=12y
Commented by Dwaipayan Shikari last updated on 30/Oct/20
f(1)^y +f(y)^1 =2(f(y))  ((1/2))^y =f(y)  So((1/2))^(xy) =f(xy)=(((1/2))^x )^y =f(x)^y   ((1/2))^x =f(x)  So      Σ_(k=0) ^∞ f(k)=((1/2))^0 +((1/2))^1 +..=2  ((1/2))^(x+y) =f(x+y)  f(x)f(y)=f(x+y)
f(1)y+f(y)1=2(f(y))(12)y=f(y)So(12)xy=f(xy)=((12)x)y=f(x)y(12)x=f(x)Sok=0f(k)=(12)0+(12)1+..=2(12)x+y=f(x+y)f(x)f(y)=f(x+y)
Commented by Ar Brandon last updated on 30/Oct/20
Thanks��

Leave a Reply

Your email address will not be published. Required fields are marked *