Menu Close

Let-f-R-R-be-a-function-satisfying-the-relation-f-x-f-y-f-xy-x-for-all-x-y-R-Then-lim-x-0-f-x-1-3-1-f-x-1-2-1-A-1-




Question Number 186748 by EnterUsername last updated on 09/Feb/23
Let f:R^+ →R^+  be a function satisfying the relation  f(x.f(y))=f(xy)+x for all x, y ∈R^+ . Then                               lim_(x→0) ((((f(x))^(1/3) −1)/((f(x))^(1/2) −1)))=  (A)  1                                          (B)  (1/2)  (C)  (2/3)                                         (D)  (3/2)
$$\mathrm{Let}\:{f}:\mathbb{R}^{+} \rightarrow\mathbb{R}^{+} \:\mathrm{be}\:\mathrm{a}\:\mathrm{function}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{relation} \\ $$$${f}\left({x}.{f}\left(\mathrm{y}\right)\right)={f}\left({x}\mathrm{y}\right)+{x}\:\mathrm{for}\:\mathrm{all}\:{x},\:\mathrm{y}\:\in\mathbb{R}^{+} .\:\mathrm{Then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\left({f}\left({x}\right)\right)^{\mathrm{1}/\mathrm{3}} −\mathrm{1}}{\left({f}\left({x}\right)\right)^{\mathrm{1}/\mathrm{2}} −\mathrm{1}}\right)= \\ $$$$\left(\mathrm{A}\right)\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\mathrm{C}\right)\:\:\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *