Menu Close

Let-f-R-R-be-polynomial-function-satisfying-f-x-f-1-x-f-x-f-1-x-and-f-3-28-then-f-x-is-




Question Number 171435 by cortano1 last updated on 15/Jun/22
  Let f:R→R be polynomial   function satisfying    f(x) f((1/x))=f(x)+f((1/x)) and   f(3)=28, then f(x) is
Letf:RRbepolynomialfunctionsatisfyingf(x)f(1x)=f(x)+f(1x)andf(3)=28,thenf(x)is
Commented by infinityaction last updated on 15/Jun/22
now function is not define R→R
nowfunctionisnotdefineRR
Commented by infinityaction last updated on 15/Jun/22
sir i have changed the question
sirihavechangedthequestion
Commented by mr W last updated on 15/Jun/22
f is R→R means:  for x∈R ⇒y=f(x) ∈ R.  it doesn′t mean:  for x∈R ⇒y=f((1/x)) ∈ R.
fisRRmeans:forxRy=f(x)R.itdoesntmean:forxRy=f(1x)R.
Commented by infinityaction last updated on 15/Jun/22
your question should be    A polynomial function f(x) satisfying    f(x) f((1/x))=f(x)+f((1/x)) and   f(3)=28, then f(x) is  then we know that   f(x) =  1±x^n   so  f(3) = 1±3^n  = 28        1+3^n  = 28    then n= 3     f(x) = 1+x^3
yourquestionshouldbeApolynomialfunctionf(x)satisfyingf(x)f(1x)=f(x)+f(1x)andf(3)=28,thenf(x)isthenweknowthatf(x)=1±xnsof(3)=1±3n=281+3n=28thenn=3f(x)=1+x3
Commented by floor(10²Eta[1]) last updated on 15/Jun/22
f is not R→R because we have (1/x) there
fisnotRRbecausewehave1xthere
Commented by floor(10²Eta[1]) last updated on 15/Jun/22
x cant be zero⇒x∉R
xcantbezeroxR
Commented by mr W last updated on 15/Jun/22
this is not true sir.  f((1/x)) doesn′t mean f is not R→R!  example:  f(x)=x  f is R→R.  f((1/x))=(1/x)
thisisnottruesir.f(1x)doesntmeanfisnotRR!example:f(x)=xfisRR.f(1x)=1x
Answered by aleks041103 last updated on 15/Jun/22
general solution  f(x)= { ((f_1 (x),x>0)),((f_2 (x),x<0)) :}  (1/(f(x))) +(1/(f(1/x)))=1  x=e^t   (1/(f(e^t )))=g(t)  ⇒g(t)+g(−t)=1  ⇒g(t)=(1/2)+o(t)  ⇒f(x)=(1/((1/2)+o(ln(x))))  ⇒f(x)= { ((((1/2)+o_1 (ln(x)))^(−1) , x>0)),((((1/2)+o_2 (ln(−x)))^(−1) , x<0)),((f_0  ,  x=0)) :}  where o_(1,2) (x) are odd functions, i.e.  o_(1,2) (−x)=−o_(1,2) (x)
generalsolutionf(x)={f1(x),x>0f2(x),x<01f(x)+1f(1/x)=1x=et1f(et)=g(t)g(t)+g(t)=1g(t)=12+o(t)f(x)=112+o(ln(x))f(x)={(12+o1(ln(x)))1,x>0(12+o2(ln(x)))1,x<0f0,x=0whereo1,2(x)areoddfunctions,i.e.o1,2(x)=o1,2(x)

Leave a Reply

Your email address will not be published. Required fields are marked *