Question Number 171435 by cortano1 last updated on 15/Jun/22
$$\:\:{Let}\:{f}:{R}\rightarrow{R}\:{be}\:{polynomial} \\ $$$$\:{function}\:{satisfying}\: \\ $$$$\:{f}\left({x}\right)\:{f}\left(\frac{\mathrm{1}}{{x}}\right)={f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)\:{and} \\ $$$$\:{f}\left(\mathrm{3}\right)=\mathrm{28},\:{then}\:{f}\left({x}\right)\:{is} \\ $$
Commented by infinityaction last updated on 15/Jun/22
$${now}\:{function}\:{is}\:{not}\:{define}\:{R}\rightarrow{R} \\ $$
Commented by infinityaction last updated on 15/Jun/22
$${sir}\:{i}\:{have}\:{changed}\:{the}\:{question} \\ $$
Commented by mr W last updated on 15/Jun/22
$${f}\:{is}\:{R}\rightarrow{R}\:{means}: \\ $$$${for}\:{x}\in{R}\:\Rightarrow{y}={f}\left({x}\right)\:\in\:{R}. \\ $$$${it}\:{doesn}'{t}\:{mean}: \\ $$$${for}\:{x}\in{R}\:\Rightarrow{y}={f}\left(\frac{\mathrm{1}}{{x}}\right)\:\in\:{R}. \\ $$
Commented by infinityaction last updated on 15/Jun/22
$${your}\:{question}\:{should}\:{be} \\ $$$$\:\:{A}\:{polynomial}\:{function}\:{f}\left({x}\right)\:{satisfying}\: \\ $$$$\:{f}\left({x}\right)\:{f}\left(\frac{\mathrm{1}}{{x}}\right)={f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)\:{and} \\ $$$$\:{f}\left(\mathrm{3}\right)=\mathrm{28},\:{then}\:{f}\left({x}\right)\:{is} \\ $$$${then}\:{we}\:{know}\:{that} \\ $$$$\:{f}\left({x}\right)\:=\:\:\mathrm{1}\pm{x}^{{n}} \\ $$$${so}\:\:{f}\left(\mathrm{3}\right)\:=\:\mathrm{1}\pm\mathrm{3}^{{n}} \:=\:\mathrm{28} \\ $$$$\:\:\:\:\:\:\mathrm{1}+\mathrm{3}^{{n}} \:=\:\mathrm{28} \\ $$$$\:\:{then}\:{n}=\:\mathrm{3} \\ $$$$\:\:\:{f}\left({x}\right)\:=\:\mathrm{1}+{x}^{\mathrm{3}} \\ $$
Commented by floor(10²Eta[1]) last updated on 15/Jun/22
$$\mathrm{f}\:\mathrm{is}\:\mathrm{not}\:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{because}\:\mathrm{we}\:\mathrm{have}\:\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{there} \\ $$
Commented by floor(10²Eta[1]) last updated on 15/Jun/22
$$\mathrm{x}\:\mathrm{cant}\:\mathrm{be}\:\mathrm{zero}\Rightarrow\mathrm{x}\notin\mathbb{R} \\ $$
Commented by mr W last updated on 15/Jun/22
$${this}\:{is}\:{not}\:{true}\:{sir}. \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)\:{doesn}'{t}\:{mean}\:{f}\:{is}\:{not}\:{R}\rightarrow{R}! \\ $$$${example}: \\ $$$${f}\left({x}\right)={x} \\ $$$${f}\:{is}\:{R}\rightarrow{R}. \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\mathrm{1}}{{x}} \\ $$
Answered by aleks041103 last updated on 15/Jun/22
$${general}\:{solution} \\ $$$${f}\left({x}\right)=\begin{cases}{{f}_{\mathrm{1}} \left({x}\right),{x}>\mathrm{0}}\\{{f}_{\mathrm{2}} \left({x}\right),{x}<\mathrm{0}}\end{cases} \\ $$$$\frac{\mathrm{1}}{{f}\left({x}\right)}\:+\frac{\mathrm{1}}{{f}\left(\mathrm{1}/{x}\right)}=\mathrm{1} \\ $$$${x}={e}^{{t}} \\ $$$$\frac{\mathrm{1}}{{f}\left({e}^{{t}} \right)}={g}\left({t}\right) \\ $$$$\Rightarrow{g}\left({t}\right)+{g}\left(−{t}\right)=\mathrm{1} \\ $$$$\Rightarrow{g}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}}+{o}\left({t}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{2}}+{o}\left({ln}\left({x}\right)\right)} \\ $$$$\Rightarrow{f}\left({x}\right)=\begin{cases}{\left(\frac{\mathrm{1}}{\mathrm{2}}+{o}_{\mathrm{1}} \left({ln}\left({x}\right)\right)\right)^{−\mathrm{1}} ,\:{x}>\mathrm{0}}\\{\left(\frac{\mathrm{1}}{\mathrm{2}}+{o}_{\mathrm{2}} \left({ln}\left(−{x}\right)\right)\right)^{−\mathrm{1}} ,\:{x}<\mathrm{0}}\\{{f}_{\mathrm{0}} \:,\:\:{x}=\mathrm{0}}\end{cases} \\ $$$${where}\:{o}_{\mathrm{1},\mathrm{2}} \left({x}\right)\:{are}\:{odd}\:{functions},\:{i}.{e}. \\ $$$${o}_{\mathrm{1},\mathrm{2}} \left(−{x}\right)=−{o}_{\mathrm{1},\mathrm{2}} \left({x}\right) \\ $$$$ \\ $$