Menu Close

Let-f-sin-x-2f-cos-x-3-x-0-pi-2-Then-1-f-sin-x-1-x-0-pi-2-2-f-sin-x-1-x-1-0-3-f-cos-x-1-x-0-1-4-f-x-1-x-0-1-




Question Number 16085 by Tinkutara last updated on 18/Jun/17
Let f(sin x) + 2f(cos x) = 3 ∀ x ∈ (0, (π/2)).  Then  (1) f(sin x) = 1, x ∈ (0, (π/2))  (2) f(sin x) = 1, x ∈ (−1, 0)  (3) f(cos x) = 1, x ∈ (0, 1)  (4) f(x) = 1, x ∈ (0, 1)
Letf(sinx)+2f(cosx)=3x(0,π2).Then(1)f(sinx)=1,x(0,π2)(2)f(sinx)=1,x(1,0)(3)f(cosx)=1,x(0,1)(4)f(x)=1,x(0,1)
Commented by prakash jain last updated on 19/Jun/17
f(sin x)+2f(cos x)=3  x=(π/2)−x  f(cos x)+2f(sin x)=3  f(cos x)−f(sin x)=  ⇒f(cos x)=f(sin x)  ⇒3f(cos x)=3⇒f(cos x)=1=f(sin x)  f(sin x)=1=f(cosx) ,x∈(0,(π/2))  ⇒f(x)=1, x∈(0,1)
f(sinx)+2f(cosx)=3x=π2xf(cosx)+2f(sinx)=3f(cosx)f(sinx)=f(cosx)=f(sinx)3f(cosx)=3f(cosx)=1=f(sinx)f(sinx)=1=f(cosx),x(0,π2)f(x)=1,x(0,1)

Leave a Reply

Your email address will not be published. Required fields are marked *