Menu Close

Let-f-sin-x-2f-cos-x-3-x-0-pi-2-Then-1-f-sin-x-1-x-0-pi-2-2-f-sin-x-1-x-1-0-3-f-cos-x-1-x-0-1-4-f-x-1-x-0-1-




Question Number 16085 by Tinkutara last updated on 18/Jun/17
Let f(sin x) + 2f(cos x) = 3 ∀ x ∈ (0, (π/2)).  Then  (1) f(sin x) = 1, x ∈ (0, (π/2))  (2) f(sin x) = 1, x ∈ (−1, 0)  (3) f(cos x) = 1, x ∈ (0, 1)  (4) f(x) = 1, x ∈ (0, 1)
$$\mathrm{Let}\:{f}\left(\mathrm{sin}\:{x}\right)\:+\:\mathrm{2}{f}\left(\mathrm{cos}\:{x}\right)\:=\:\mathrm{3}\:\forall\:{x}\:\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right). \\ $$$$\mathrm{Then} \\ $$$$\left(\mathrm{1}\right)\:{f}\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{2}\right)\:{f}\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(−\mathrm{1},\:\mathrm{0}\right) \\ $$$$\left(\mathrm{3}\right)\:{f}\left(\mathrm{cos}\:{x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(\mathrm{0},\:\mathrm{1}\right) \\ $$$$\left(\mathrm{4}\right)\:{f}\left({x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(\mathrm{0},\:\mathrm{1}\right) \\ $$
Commented by prakash jain last updated on 19/Jun/17
f(sin x)+2f(cos x)=3  x=(π/2)−x  f(cos x)+2f(sin x)=3  f(cos x)−f(sin x)=  ⇒f(cos x)=f(sin x)  ⇒3f(cos x)=3⇒f(cos x)=1=f(sin x)  f(sin x)=1=f(cosx) ,x∈(0,(π/2))  ⇒f(x)=1, x∈(0,1)
$${f}\left(\mathrm{sin}\:{x}\right)+\mathrm{2}{f}\left(\mathrm{cos}\:{x}\right)=\mathrm{3} \\ $$$${x}=\frac{\pi}{\mathrm{2}}−{x} \\ $$$${f}\left(\mathrm{cos}\:{x}\right)+\mathrm{2}{f}\left(\mathrm{sin}\:{x}\right)=\mathrm{3} \\ $$$${f}\left(\mathrm{cos}\:{x}\right)−{f}\left(\mathrm{sin}\:{x}\right)= \\ $$$$\Rightarrow{f}\left(\mathrm{cos}\:{x}\right)={f}\left(\mathrm{sin}\:{x}\right) \\ $$$$\Rightarrow\mathrm{3}{f}\left(\mathrm{cos}\:{x}\right)=\mathrm{3}\Rightarrow{f}\left(\mathrm{cos}\:{x}\right)=\mathrm{1}={f}\left(\mathrm{sin}\:{x}\right) \\ $$$${f}\left(\mathrm{sin}\:{x}\right)=\mathrm{1}={f}\left(\mathrm{cos}{x}\right)\:,{x}\in\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{1},\:{x}\in\left(\mathrm{0},\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *