let-f-sin-x-x-2-2-x-1-2-dx-with-lt-1-1-find-the-value-of-f-2-calculate-sin-x-2-x-2-x-1-2-dx-3-find-A- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 52683 by maxmathsup by imad last updated on 11/Jan/19 letf(λ)=∫−∞+∞sin(λx)(x2+2λx+1)2dxwith∣λ∣<11)findthevalueoff(λ)2)calculate∫−∞+∞sin(x2)(x2+x+1)2dx3)findA(θ)=∫−∞+∞sin((cosθ)x)(x2+2cosθx+1)2thatwesuppose0<θ<π2 Commented by maxmathsup by imad last updated on 13/Jan/19 1)f(λ)=Im(∫−∞+∞eiλx(x2+2λx+1)2dx)letconsderthecomplexfunctionφ(z)=eiλz(x2+2λx+1)2polesofφ?letdeterminerootsofx2+2λx+1Δ′=λ2−1<0⇒Δ′=−(1−λ2)=(i1−λ2)2⇒z1=−λ+i1−λ2andz2=−λ−i1−λ2⇒φhavedoublepolesz1andz2φ(z)=eiλz(z−z1)2(z−z2)2residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,z1)butRes(φ,z1)=limz→z11(2−1)!{(z−z1)2φ(z)}(1)=limz→z1{eiλz(z−z2)2}(1)=limz→z1iλeiλz(z−z2)2−2(z−z2)eiλz(z−z2)4=limz→z1(iλ(z−z2)−2)eiλz(z−z2)3=(iλ(z1−z2)−2)eiz1(z1−z2)3=(iλ(2i1−λ2)−2)eiλz1(2i1−λ2)3=(−2λ1−λ2−2)eiλ(−λ+i1−λ2)−8i(1−λ2)1−λ2=(1+λ1−λ2)e−iλ2e−λ1−λ24i(1−λ2)1−λ2⇒∫−∞+∞φ(z)dz=2iπ(1+λ1−λ2)e−λ1−λ24i(1−λ2)1−λ2e−iλ2=π2(1+λ1−λ2)e−λ1−λ2(1−λ2)1−λ2(cos(λ2)−isin(λ2))⇒f(λ)=−π2sin(λ2)(1+λ1−λ2)e−λ1−λ2(1−λ2)1−λ2. Commented by maxmathsup by imad last updated on 13/Jan/19 2)∫−∞+∞sin(x2)(x2+x+1)2dx=f(12)=−π2sin(14)(1+1234)e−12343434=−π2sin(14)(1+34)e−34338=−4πsin(14)(1+34)e−3433. Commented by Abdo msup. last updated on 13/Jan/19 3)A(θ)=f(cosθ)=−π2sin(cos2θ)(1+cosθsinθ)e−cosθsinθsin3θ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-n-x-sin-nx-n-3-and-f-x-n-1-f-n-x-calculate-0-pi-f-x-dx-Next Next post: sin-6-2x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.