Menu Close

let-f-sin-x-x-2-2-x-1-2-dx-with-lt-1-1-find-the-value-of-f-2-calculate-sin-x-2-x-2-x-1-2-dx-3-find-A-




Question Number 52683 by maxmathsup by imad last updated on 11/Jan/19
let f(λ) =∫_(−∞) ^(+∞)   ((sin(λx))/((x^2  +2λx +1)^2 ))dx    with ∣λ∣<1  1) find the value of f(λ)  2) calculate ∫_(−∞) ^(+∞)    ((sin((x/(2 ))))/((x^2   +x+1)^2 ))dx  3) find  A(θ) =∫_(−∞) ^(+∞)     ((sin((cosθ)x))/((x^2  +2cosθ x +1)^2 ))  that we suppose 0<θ<(π/2)
letf(λ)=+sin(λx)(x2+2λx+1)2dxwithλ∣<11)findthevalueoff(λ)2)calculate+sin(x2)(x2+x+1)2dx3)findA(θ)=+sin((cosθ)x)(x2+2cosθx+1)2thatwesuppose0<θ<π2
Commented by maxmathsup by imad last updated on 13/Jan/19
1) f(λ)=Im(∫_(−∞) ^(+∞)    (e^(iλx) /((x^2  +2λx +1)^2 ))dx) let consder the complex function  ϕ(z)= (e^(iλz) /((x^2 +2λx +1)^2 )) poles of ϕ?  let determine roots of x^2  +2λx +1  Δ^′ =λ^2 −1<0 ⇒Δ^′  =−(1−λ^2 ) =(i(√(1−λ^2 )))^2  ⇒z_1 =−λ +i(√(1−λ^2 ))  and z_2 =−λ−i(√(1−λ^2 ))    ⇒ ϕ have double poles z_1  and z_2   ϕ(z) =(e^(iλz) /((z−z_1 )^2 (z−z_2 )^2 ))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 ) but  Res(ϕ,z_1 )=lim_(z→z_1 )  (1/((2−1)!)) {(z−z_1 )^2 ϕ(z)}^((1))   =lim_(z→z_1 )    { (e^(iλz) /((z−z_2 )^2 ))}^((1))   =lim_(z→z_1 )  ((iλ e^(iλz) (z−z_2 )^2  −2(z−z_2 )e^(iλz) )/((z−z_2 )^4 )) =lim_(z→z_1 )  (((iλ(z−z_2 )−2)e^(iλz) )/((z−z_2 )^3 ))  =(((iλ(z_1 −z_2 )−2)e^(iz_1 ) )/((z_1 −z_2 )^3 )) =(((iλ(2i(√(1−λ^2 )))−2)e^(iλz_1 ) )/((2i(√(1−λ^2 )))^3 ))  =(((−2λ(√(1−λ^2 ))−2)e^(iλ(−λ+i(√(1−λ^2 )))) )/(−8i(1−λ^2 )(√(1−λ^2 )))) =(((1+λ(√(1−λ^2 )))e^(−iλ^2 )  e^(−λ(√(1−λ^2 ))) )/(4i(1−λ^2 )(√(1−λ^2 ))))  ⇒∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (((1+λ(√(1−λ^2 )))e^(−λ(√(1−λ^2 ))) )/(4i(1−λ^2 )(√(1−λ^2 )))) e^(−iλ^2 )    =(π/2) (((1+λ(√(1−λ^2 )))e^(−λ(√(1−λ^2 ))) )/((1−λ^2 )(√(1−λ^2 )))) (cos(λ^2 )−isin(λ^2 )) ⇒  f(λ) =−(π/2) sin(λ^2 ) (((1+λ(√(1−λ^2 )))e^(−λ(√(1−λ^2 ))) )/((1−λ^2 )(√(1−λ^2 )))) .
1)f(λ)=Im(+eiλx(x2+2λx+1)2dx)letconsderthecomplexfunctionφ(z)=eiλz(x2+2λx+1)2polesofφ?letdeterminerootsofx2+2λx+1Δ=λ21<0Δ=(1λ2)=(i1λ2)2z1=λ+i1λ2andz2=λi1λ2φhavedoublepolesz1andz2φ(z)=eiλz(zz1)2(zz2)2residustheoremgive+φ(z)dz=2iπRes(φ,z1)butRes(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1)=limzz1{eiλz(zz2)2}(1)=limzz1iλeiλz(zz2)22(zz2)eiλz(zz2)4=limzz1(iλ(zz2)2)eiλz(zz2)3=(iλ(z1z2)2)eiz1(z1z2)3=(iλ(2i1λ2)2)eiλz1(2i1λ2)3=(2λ1λ22)eiλ(λ+i1λ2)8i(1λ2)1λ2=(1+λ1λ2)eiλ2eλ1λ24i(1λ2)1λ2+φ(z)dz=2iπ(1+λ1λ2)eλ1λ24i(1λ2)1λ2eiλ2=π2(1+λ1λ2)eλ1λ2(1λ2)1λ2(cos(λ2)isin(λ2))f(λ)=π2sin(λ2)(1+λ1λ2)eλ1λ2(1λ2)1λ2.
Commented by maxmathsup by imad last updated on 13/Jan/19
2) ∫_(−∞) ^(+∞)  ((sin((x/2)))/((x^2  +x+1)^2 )) dx =f((1/2))=−(π/2)sin((1/4))(((1+(1/2)(√(3/4)))e^(−(1/2)(√(3/4))) )/((3/4)(√(3/4))))  =−(π/2)sin((1/4))(((1+((√3)/4))e^(−((√3)/4)) )/((3(√3))/8)) =−4π sin((1/4))(((1+((√3)/4))e^(−((√3)/4)) )/(3(√3))) .
2)+sin(x2)(x2+x+1)2dx=f(12)=π2sin(14)(1+1234)e12343434=π2sin(14)(1+34)e34338=4πsin(14)(1+34)e3433.
Commented by Abdo msup. last updated on 13/Jan/19
3) A(θ)=f(cosθ)=−(π/2)sin(cos^2 θ)(((1+cosθsinθ)e^(−cosθsinθ) )/(sin^3 θ))
3)A(θ)=f(cosθ)=π2sin(cos2θ)(1+cosθsinθ)ecosθsinθsin3θ

Leave a Reply

Your email address will not be published. Required fields are marked *