Question Number 60498 by abdo mathsup 649 cc last updated on 21/May/19

Commented by maxmathsup by imad last updated on 22/May/19
![let x^2 +x +t →Δ=1−4t but 4t≥1 ⇒4t−1≥0 ⇒1−4t ≤0 case 1 1−4t <0 ⇒x^2 +x +t =x^2 +2(x/2) +(1/(4 )) +t−(1/4) =(x+(1/2))^2 +((4t−1)/4) we do the changement (x+(1/2)) =((√(4t−1))/2)u ⇒u=((2x+1)/( (√(4t−1)))) f(t) =∫_(1/( (√(4t−1)))) ^(7/( (√(4t−1)))) ((√(4t−1))/2)(√(1+u^2 ))((√(4t−1))/2) du =((4t−1)/4) ∫_(1/( (√(4t−1)))) ^(7/( (√(4t−1)))) (√(1+u^2 ))du =_(u =sh(α)) ((4t−1)/4) ∫_(argsh((1/( (√(4t−1)))))) ^(argsh((7/( (√(4t−1)))))) ch(α)ch(α)dα =((4t−1)/8) ∫_(ln((1/( (√(4t−1)))) +(√(1+(1/(4t−1)))))) ^(ln((7/( (√(4t−1)))) +(√(1+((49)/(4t−1)))))) (1+ch(2t))dt =((4t−1)/8){ln((7/( (√(4t−1))))+(√((4t+48)/(4t−1))))−ln((1/( (√(4t−1))))+((2(√t))/( (√(4t−1)))))} +((4t−1)/(16))[ sh(2t)]_(ln((1/( (√(4t))−1)) +(√((4t)/(4t−1))))) ^(ln((7/( (√(4t))−1)) +(√((4t+48)/(4t−1))))) =((4t−1)/8){ ln((7/( (√(4t−1)))) +(√((4t+48)/(4t−1))))−ln((1/( (√(4t−1)))) +(√((4t)/(4t−1))))} ((4t−1)/(32))[ e^(2t) −e^(−2t) ]_(...) ^(...) ⇒ f(t)=((4t−1)/8){ ln((7/( (√(4t−1)))) +(√((4t+48)/(4t−1)))) −ln((1/( (√(4t−1)))) +(√((4t)/(4g−1))))} +((4t−1)/(32)){ ((7/( (√(4t−1)))) +(√((4t+48)/(4t−1))))^2 −(1/(((7/( (√(4t−1))))+(√((4t +48)/(4t−1))))^2 )) −((1/( (√(4t−1)))) +(√((4t)/(4t−1))))^2 +(1/(((1/( (√(4t−1))))+(√((4t)/(4t−1))))^2 ))}](https://www.tinkutara.com/question/Q60589.png)
Commented by maxmathsup by imad last updated on 22/May/19
![case 2 t=(1/4) ⇒f(t)=∫_0 ^3 (√(x^2 +x+(1/4)))dx =∫_0 ^3 (√((x+(1/2))^2 ))dx =∫_0 ^3 (x+(1/2))dx =[(x^2 /2) +(1/2)x]_0 ^3 =(9/2) +(3/2) =6 2) we have f^′ (t) =∫_0 ^3 (dx/(2(√(t+x+x^2 )))) =(1/2)g(t) ⇒g(x) =2f^′ (t) rest to calculatef^′ (t)](https://www.tinkutara.com/question/Q60591.png)
Commented by maxmathsup by imad last updated on 22/May/19

Commented by maxmathsup by imad last updated on 22/May/19
![let calculate I =∫_0 ^3 (dx/( (√(x^2 +x +2)))) we have x^2 +x+2 =x^2 +x+(1/4) +2−(1/4) =(x+(1/2))^2 +(7/4) let use the changement x+(1/2)=((√7)/2) tanθ ⇒2x+1 =(√7)tanθ I =∫_(arctan((1/( (√7))))) ^(arctan((√7))) (1/( (√((7/4)(1+tan^2 θ)))))((√7)/2) dθ = ∫_(arctan((1/( (√7))))) ^(arctan((√7))) (dθ/( (√(1+tan^2 θ)))) =∫_(arctan((1/( (√7) )))) ^(arctan((√7))) cosθ dθ =[sinθ]_(arctan((1/( (√7))))) ^(arctan((√7))) = sin(arctan((√7)))−sin(arctan((1/( (√7))))) sin(arctanx) =(x/( (√(1+x^2 )))) ⇒sin(arctan((√7))) =((√7)/( (√8))) =((√7)/(2(√2))) sin(arctan((1/( (√7))))) =(1/( (√7)(√(1+(1/7))))) =(1/( (√7)((√8)/( (√7))))) =(1/(2(√2))) ⇒ I =(((√7)−1)/(2(√2))) .](https://www.tinkutara.com/question/Q60594.png)