Menu Close

let-f-t-0-3-t-x-x-2-dx-with-t-1-4-1-find-a-explicit-form-of-f-t-2-find-also-g-t-0-3-dx-t-x-x-2-3-calculate-0-3-1-x-x-2-dx-0-3-2-x-x-2-dx-0-




Question Number 60498 by abdo mathsup 649 cc last updated on 21/May/19
let f(t) =∫_0 ^3 (√(t +x +x^2 ))dx  with t ≥(1/4)  1) find a explicit form of f(t)  2) find also g(t) = ∫_0 ^3    (dx/( (√(t+x +x^2 ))))  3) calculate  ∫_0 ^3  (√(1+x+x^2 ))dx , ∫_0 ^3 (√(2 +x+x^2 ))dx  ∫_0 ^3    (dx/( (√(2+x +x^2 ))))  .
letf(t)=03t+x+x2dxwitht141)findaexplicitformoff(t)2)findalsog(t)=03dxt+x+x23)calculate031+x+x2dx,032+x+x2dx03dx2+x+x2.
Commented by maxmathsup by imad last updated on 22/May/19
let x^2  +x +t  →Δ=1−4t    but 4t≥1 ⇒4t−1≥0 ⇒1−4t ≤0  case 1    1−4t <0 ⇒x^2  +x +t =x^2  +2(x/2) +(1/(4 )) +t−(1/4) =(x+(1/2))^2  +((4t−1)/4)  we do the changement (x+(1/2)) =((√(4t−1))/2)u ⇒u=((2x+1)/( (√(4t−1))))  f(t) =∫_(1/( (√(4t−1)))) ^(7/( (√(4t−1))))   ((√(4t−1))/2)(√(1+u^2 ))((√(4t−1))/2) du =((4t−1)/4) ∫_(1/( (√(4t−1)))) ^(7/( (√(4t−1))))   (√(1+u^2 ))du  =_(u =sh(α))    ((4t−1)/4) ∫_(argsh((1/( (√(4t−1)))))) ^(argsh((7/( (√(4t−1))))))   ch(α)ch(α)dα  =((4t−1)/8) ∫_(ln((1/( (√(4t−1)))) +(√(1+(1/(4t−1)))))) ^(ln((7/( (√(4t−1)))) +(√(1+((49)/(4t−1))))))    (1+ch(2t))dt  =((4t−1)/8){ln((7/( (√(4t−1))))+(√((4t+48)/(4t−1))))−ln((1/( (√(4t−1))))+((2(√t))/( (√(4t−1)))))}  +((4t−1)/(16))[ sh(2t)]_(ln((1/( (√(4t))−1)) +(√((4t)/(4t−1))))) ^(ln((7/( (√(4t))−1)) +(√((4t+48)/(4t−1)))))   =((4t−1)/8){  ln((7/( (√(4t−1)))) +(√((4t+48)/(4t−1))))−ln((1/( (√(4t−1)))) +(√((4t)/(4t−1))))}  ((4t−1)/(32))[ e^(2t) −e^(−2t) ]_(...) ^(...)   ⇒  f(t)=((4t−1)/8){ ln((7/( (√(4t−1)))) +(√((4t+48)/(4t−1)))) −ln((1/( (√(4t−1)))) +(√((4t)/(4g−1))))}  +((4t−1)/(32)){   ((7/( (√(4t−1)))) +(√((4t+48)/(4t−1))))^2 −(1/(((7/( (√(4t−1))))+(√((4t +48)/(4t−1))))^2 ))  −((1/( (√(4t−1)))) +(√((4t)/(4t−1))))^2  +(1/(((1/( (√(4t−1))))+(√((4t)/(4t−1))))^2 ))}
letx2+x+tΔ=14tbut4t14t1014t0case114t<0x2+x+t=x2+2x2+14+t14=(x+12)2+4t14wedothechangement(x+12)=4t12uu=2x+14t1f(t)=14t174t14t121+u24t12du=4t1414t174t11+u2du=u=sh(α)4t14argsh(14t1)argsh(74t1)ch(α)ch(α)dα=4t18ln(14t1+1+14t1)ln(74t1+1+494t1)(1+ch(2t))dt=4t18{ln(74t1+4t+484t1)ln(14t1+2t4t1)}+4t116[sh(2t)]ln(14t1+4t4t1)ln(74t1+4t+484t1)=4t18{ln(74t1+4t+484t1)ln(14t1+4t4t1)}4t132[e2te2t]f(t)=4t18{ln(74t1+4t+484t1)ln(14t1+4t4g1)}+4t132{(74t1+4t+484t1)21(74t1+4t+484t1)2(14t1+4t4t1)2+1(14t1+4t4t1)2}
Commented by maxmathsup by imad last updated on 22/May/19
case 2   t=(1/4) ⇒f(t)=∫_0 ^3 (√(x^2  +x+(1/4)))dx =∫_0 ^3 (√((x+(1/2))^2 ))dx  =∫_0 ^3 (x+(1/2))dx =[(x^2 /2) +(1/2)x]_0 ^3  =(9/2) +(3/2) =6  2) we have f^′ (t) =∫_0 ^3    (dx/(2(√(t+x+x^2 )))) =(1/2)g(t) ⇒g(x) =2f^′ (t) rest to calculatef^′ (t)
case2t=14f(t)=03x2+x+14dx=03(x+12)2dx=03(x+12)dx=[x22+12x]03=92+32=62)wehavef(t)=03dx2t+x+x2=12g(t)g(x)=2f(t)resttocalculatef(t)
Commented by maxmathsup by imad last updated on 22/May/19
3) ∫_0 ^3  (√(1+x+x^2 ))dx =f(1) =(3/8){ln((7/( (√3))) +((√(52))/( (√3))))−ln((1/( (√3))) +(2/( (√3))))}  +(3/(32)){ ((7/( (√3))) +((√(52))/( (√3))))^2  −(1/(((7/( (√3)))+((√(52))/( (√3))))^2 )) −((1/( (√3))) +(2/( (√3))))^2  +(1/(((1/( (√3))) +(2/( (√3))))^2 ))} .  ∫_0 ^3 (√(2+x+x^2 ))dx =f(2)=....
3)031+x+x2dx=f(1)=38{ln(73+523)ln(13+23)}+332{(73+523)21(73+523)2(13+23)2+1(13+23)2}.032+x+x2dx=f(2)=.
Commented by maxmathsup by imad last updated on 22/May/19
let calculate I =∫_0 ^3    (dx/( (√(x^2  +x +2))))  we have x^2  +x+2 =x^2  +x+(1/4) +2−(1/4)  =(x+(1/2))^2  +(7/4)   let use the changement x+(1/2)=((√7)/2) tanθ ⇒2x+1 =(√7)tanθ  I =∫_(arctan((1/( (√7))))) ^(arctan((√7)))       (1/( (√((7/4)(1+tan^2 θ)))))((√7)/2) dθ = ∫_(arctan((1/( (√7))))) ^(arctan((√7)))    (dθ/( (√(1+tan^2 θ))))  =∫_(arctan((1/( (√7) )))) ^(arctan((√7)))  cosθ dθ =[sinθ]_(arctan((1/( (√7))))) ^(arctan((√7)))  = sin(arctan((√7)))−sin(arctan((1/( (√7)))))  sin(arctanx) =(x/( (√(1+x^2 ))))  ⇒sin(arctan((√7))) =((√7)/( (√8))) =((√7)/(2(√2)))  sin(arctan((1/( (√7))))) =(1/( (√7)(√(1+(1/7))))) =(1/( (√7)((√8)/( (√7))))) =(1/(2(√2))) ⇒  I =(((√7)−1)/(2(√2))) .
letcalculateI=03dxx2+x+2wehavex2+x+2=x2+x+14+214=(x+12)2+74letusethechangementx+12=72tanθ2x+1=7tanθI=arctan(17)arctan(7)174(1+tan2θ)72dθ=arctan(17)arctan(7)dθ1+tan2θ=arctan(17)arctan(7)cosθdθ=[sinθ]arctan(17)arctan(7)=sin(arctan(7))sin(arctan(17))sin(arctanx)=x1+x2sin(arctan(7))=78=722sin(arctan(17))=171+17=1787=122I=7122.

Leave a Reply

Your email address will not be published. Required fields are marked *