Menu Close

let-f-t-0-arctan-tx-x-3-8-dx-1-find-a-simple-form-of-f-t-2-calculate-0-arctan-x-x-3-8-dx-




Question Number 40829 by math khazana by abdo last updated on 28/Jul/18
let f(t) = ∫_0 ^∞   ((arctan(tx))/(x^3 +8))dx  1)find a simple form of f(t)  2)calculate ∫_0 ^∞    ((arctan(x))/(x^3  +8))dx .
letf(t)=0arctan(tx)x3+8dx1)findasimpleformoff(t)2)calculate0arctan(x)x3+8dx.
Answered by maxmathsup by imad last updated on 29/Jul/18
1) we have f^′ (t) = ∫_0 ^∞    (x/((1+t^2 x^2 )(x^3 +8)))dx =_(tx =α)   ∫_0 ^∞      (1/((1+α^2 )((α^3 /t^3 ) +8)))(α/t) (dα/t)  =(1/t^2 )∫_0 ^∞     t^3   ((αdα)/((1+α^2 )(α^3  +8t^3 ))) = t ∫_0 ^∞     ((xdx)/((x^2  +1)(x^3 +8t^3 ))) let decompose  F(x)=(x/((x^2  +1)(x^3 +8t^3 )))  F(x) =  (x/((x^2  +1)(x+2t)(x^2 −2xt +4t^2 ))) =(a/(x+2t)) +((bx+c)/(x^2  +1)) +((dx+e)/(x^2  −2xt +4t^2 ))  a =lim_(x→−2t)     (x+2t)F(x)= ((−2t)/((4t^2  +1)(12t^2 ))) = ((−1)/(6t(4t^2  +1)))  lim_(x→+∞) xF(x)=0 =a +b +d ⇒b+d =−a  F(o) =0 =(a/(2t)) +c +(e/(4t^2 )) ⇒2at +4t^2 c +e =0 ....be continued...
1)wehavef(t)=0x(1+t2x2)(x3+8)dx=tx=α01(1+α2)(α3t3+8)αtdαt=1t20t3αdα(1+α2)(α3+8t3)=t0xdx(x2+1)(x3+8t3)letdecomposeF(x)=x(x2+1)(x3+8t3)F(x)=x(x2+1)(x+2t)(x22xt+4t2)=ax+2t+bx+cx2+1+dx+ex22xt+4t2a=limx2t(x+2t)F(x)=2t(4t2+1)(12t2)=16t(4t2+1)limx+xF(x)=0=a+b+db+d=aF(o)=0=a2t+c+e4t22at+4t2c+e=0.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *