let-f-t-0-cos-2-tx-x-2-3-2-dx-with-t-0-1-give-a-explicit-form-of-f-t-2-find-the-value-of-0-xsin-2tx-x-2-3-2-dx-3-give-the-values-of-integrals-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 52703 by maxmathsup by imad last updated on 11/Jan/19 letf(t)=∫0∞cos2(tx)(x2+3)2dxwitht⩾01)giveaexplicitformoff(t)2)findthevalueof∫0∞xsin(2tx)(x2+3)2dx3)givethevaluesofintegrals∫0∞dx(x2+3)2and∫0∞cos2(πx)(x2+3)2dx4)givethevaluesofintegrals∫0∞xsin(πx)(x2+3)2and∫0∞xsin(πx2)(x2+3)2dx. Commented by Abdo msup. last updated on 13/Jan/19 channgementx=3ugivef(t)=∫0∞cos2(3tu)9(u2+1)23du=39∫0+∞cos2(3tu)(u2+1)2du=318∫−∞+∞cos2(3tu)(u2+1)2du=318∫−∞+∞1+cos(23tu)2(u2+1)2du=336∫−∞+∞du(u2+1)2+336∫−∞+∞cos(23tu)du(u2+1)2∫−∞+∞du(u2+1)2=u=tanθ∫−π2π21+tan2θ(1+tan2θ)2dθ=2∫0π2cos2θdθ=2∫0π21+cos(2θ)2dθ=π2+[12sin(2θ)]0π2=π2letdetermine∫−∞+∞cos(23tu)(u2+1)2du=II=Re(∫−∞+∞e2i3tu(u2+1)2du)letφ(z)=e2i3tz(z2+1)2⇒φ(z)=e2i3tz(z−i)2(z+i)2thepolesofφareiand−i(doubles)so∫−∞+∞φ(z)dz=2iπRe(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{e2i3tz(z+i)2}(1)=limz→i2i3te2i3tz(z+i)2−2(z+i)e2i3tz(z+i)4=limz→i(2i3t(z+i)−2)e2i3tz(z+i)3=(2i3t(2i)−2)e−23t(2i)3=(−4i3t−2)e−23t−8i=(2i3t+1)e−23t4i⇒∫−∞+∞φ(z)dz=2iπ(2i3t+1)e−23t4i=π2(2i3t+1)e−23tbutI=Re(∫−∞+∞φ(z)dz)=π2e−23t⇒f(t)=π372+336{π2e−23t}⇒f(t)=π372(1+e−23t). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-for-x-x-x-x-2-2048-by-using-lambert-function-Next Next post: In-a-square-ABCD-there-is-a-quarter-of-a-circle-ADC-AD-DC-put-a-point-N-in-the-arc-AC-such-that-AN-1-and-NC-2-2-find-BN- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.