Menu Close

let-f-t-0-cos-2-tx-x-2-3-2-dx-with-t-0-1-give-a-explicit-form-of-f-t-2-find-the-value-of-0-xsin-2tx-x-2-3-2-dx-3-give-the-values-of-integrals-0-




Question Number 52703 by maxmathsup by imad last updated on 11/Jan/19
let f(t) =∫_0 ^∞   ((cos^2 (tx))/((x^2 +3)^2 )) dx  with t ≥0  1) give a explicit form of f(t)  2) find the value of  ∫_0 ^∞   ((xsin(2tx))/((x^2  +3)^2 )) dx  3) give the values of integrals  ∫_0 ^∞    (dx/((x^2  +3)^2 )) and   ∫_0 ^∞   ((cos^2 (πx))/((x^2  +3)^2 ))dx  4) give the values of integrals ∫_0 ^∞    ((xsin(πx))/((x^2  +3)^2 )) and   ∫_0 ^∞   ((xsin(((πx)/2)))/((x^2  +3)^2 )) dx .
letf(t)=0cos2(tx)(x2+3)2dxwitht01)giveaexplicitformoff(t)2)findthevalueof0xsin(2tx)(x2+3)2dx3)givethevaluesofintegrals0dx(x2+3)2and0cos2(πx)(x2+3)2dx4)givethevaluesofintegrals0xsin(πx)(x2+3)2and0xsin(πx2)(x2+3)2dx.
Commented by Abdo msup. last updated on 13/Jan/19
channgement x=(√3)u give   f(t)=∫_0 ^∞   ((cos^2 ((√3)tu))/(9(u^2  +1)^2 )) (√3)du  =((√3)/9) ∫_0 ^(+∞)    ((cos^2 ((√3)tu))/((u^2  +1)^2 )) du =((√3)/(18)) ∫_(−∞) ^(+∞)  ((cos^2 ((√3)tu))/((u^2  +1)^2 ))du  =((√3)/(18)) ∫_(−∞) ^(+∞)    ((1+cos(2(√3)tu))/(2(u^2  +1)^2 ))du  =((√3)/(36)) ∫_(−∞) ^(+∞)   (du/((u^2  +1)^2 )) +((√3)/(36)) ∫_(−∞) ^(+∞)   ((cos(2(√3)tu)du)/((u^2  +1)^2 ))  ∫_(−∞) ^(+∞)    (du/((u^2  +1)^2 )) =_(u=tanθ)    ∫_(−(π/2)) ^(π/2)  ((1+tan^2 θ)/((1+tan^2 θ)^2 ))dθ  =2 ∫_0 ^(π/2)  cos^2 θ dθ =2 ∫_0 ^(π/2)  ((1+cos(2θ))/2) dθ  =(π/2) +[(1/2)sin(2θ)]_0 ^(π/2)   =(π/2)  let determine   ∫_(−∞) ^(+∞)    ((cos(2(√3)tu))/((u^2  +1)^2 )) du =I  I =Re( ∫_(−∞) ^(+∞)    (e^(2i(√3)tu) /((u^2  +1)^2 )) du) let  ϕ(z)= (e^(2i(√3)tz) /((z^2  +1)^2 )) ⇒ϕ(z)=(e^(2i(√3)tz) /((z−i)^2 (z+i)^2 ))  the poles of ϕ are i and −i(doubles) so  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Re(ϕ,i)  Res(ϕ,i)=lim_(z→i) (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i) { (e^(2i(√3)t z) /((z+i)^2 ))}^((1))   =lim_(z→i)   ((2i(√3)t e^(2i(√3)tz) (z+i)^2  −2(z+i)e^(2i(√3)tz) )/((z+i)^4 ))  =lim_(z→i)   (((2i(√3)t (z+i)−2)e^(2i(√3)tz) )/((z+i)^3 ))  =(((2i(√3)t(2i)−2)e^(−2(√3)t) )/((2i)^3 )) =(((−4i(√3)t−2) e^(−2(√3)t) )/(−8i))  =(((2i(√3)t +1)e^(−2(√3)t) )/(4i)) ⇒∫_(−∞) ^(+∞) ϕ(z)dz=  2iπ (((2i(√3)t +1)e^(−2(√3)t) )/(4i)) =(π/2)(2i(√3)t +1)e^(−2(√3)t)  but  I =Re(∫_(−∞) ^(+∞) ϕ(z)dz) =(π/2) e^(−2(√3)t)  ⇒  f(t)=((π(√3))/(72)) +((√3)/(36)){ (π/2) e^(−2(√3)t) } ⇒  f(t) =((π(√3))/(72))(1+e^(−2(√3)t) )  .
channgementx=3ugivef(t)=0cos2(3tu)9(u2+1)23du=390+cos2(3tu)(u2+1)2du=318+cos2(3tu)(u2+1)2du=318+1+cos(23tu)2(u2+1)2du=336+du(u2+1)2+336+cos(23tu)du(u2+1)2+du(u2+1)2=u=tanθπ2π21+tan2θ(1+tan2θ)2dθ=20π2cos2θdθ=20π21+cos(2θ)2dθ=π2+[12sin(2θ)]0π2=π2letdetermine+cos(23tu)(u2+1)2du=II=Re(+e2i3tu(u2+1)2du)letφ(z)=e2i3tz(z2+1)2φ(z)=e2i3tz(zi)2(z+i)2thepolesofφareiandi(doubles)so+φ(z)dz=2iπRe(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{e2i3tz(z+i)2}(1)=limzi2i3te2i3tz(z+i)22(z+i)e2i3tz(z+i)4=limzi(2i3t(z+i)2)e2i3tz(z+i)3=(2i3t(2i)2)e23t(2i)3=(4i3t2)e23t8i=(2i3t+1)e23t4i+φ(z)dz=2iπ(2i3t+1)e23t4i=π2(2i3t+1)e23tbutI=Re(+φ(z)dz)=π2e23tf(t)=π372+336{π2e23t}f(t)=π372(1+e23t).

Leave a Reply

Your email address will not be published. Required fields are marked *