Menu Close

let-f-t-0-cos-t-1-x-2-1-x-2-dx-with-t-0-find-a-explicit-form-of-f-t-




Question Number 56829 by maxmathsup by imad last updated on 24/Mar/19
let f(t) =∫_0 ^∞   ((cos(t(1+x^2 )))/(1+x^2 )) dx  with t≥0  find a explicit form of f(t)
letf(t)=0cos(t(1+x2))1+x2dxwitht0findaexplicitformoff(t)
Answered by Smail last updated on 25/Mar/19
f(t)=Im(∫_0 ^∞ (e^(−it(1+x^2 )) /(1+x^2 ))dx)  z(t)=∫_0 ^∞ (e^(−it(1+x^2 )) /(1+x^2 ))dx  z′(t)=−i∫_0 ^∞ e^(−it(1+x^2 )) dx=−ie^(−it) ∫_0 ^∞ e^(−ix^2 t) dx  let  u=(√(it))x⇒dx=(du/( (√(it))))  z′(t)=−(((√i)e^(−it) )/( (√t)))∫_0 ^∞ e^(−u^2 ) du  =−(((√i)e^(−it) )/( (√t)))×((√π)/2)   z(t)−z(0)=−((√(iπ))/2)∫_0 ^t (e^(−iu) /( (√u)))du    z(0)=∫_0 ^∞ (dx/(1+x^2 ))=(π/2)  let  θ=(√(iu))⇒dθ=(((√i)du)/(2(√u)))  z(t)=−(√π)∫_0 ^(√(it)) e^(−θ^2 ) dθ+(π/2)  =−(√π)∫_0 ^(√(it)) Σ_(n=0) ^∞ (((−θ^2 )^n )/(n!))dθ+(π/2)  =−(√π)Σ_(n=0) ^∞ (((−1)^n ((√(it)))^(2n+1) )/(n!(2n+1)))+(π/2)  =(π/2)−(√π)Σ_(n=0) ^∞ (((−1)^n (it)^n .(√(it)))/(n!(2n+1)))  =(π/2)−(√(πt))Σ_(n=0) ^∞ (((−t)^n e^(i((π/2))n) ×e^(i(π/4)) )/(n!(2n+1)))  =(π/2)−(√(πt))Σ_(n=0) ^∞ (((−t)^n e^(i(((nπ)/2)+(π/4))) )/(n!(2n+1)))  Thus   f(t)=(π/2)−(√(πt))Σ_(n=0) ^∞ (((−t)^n cos(((2n+1)/4)π))/(n!(2n+1)))
f(t)=Im(0eit(1+x2)1+x2dx)z(t)=0eit(1+x2)1+x2dxz(t)=i0eit(1+x2)dx=ieit0eix2tdxletu=itxdx=duitz(t)=ieitt0eu2du=ieitt×π2z(t)z(0)=iπ20teiuuduz(0)=0dx1+x2=π2letθ=iudθ=idu2uz(t)=π0iteθ2dθ+π2=π0itn=0(θ2)nn!dθ+π2=πn=0(1)n(it)2n+1n!(2n+1)+π2=π2πn=0(1)n(it)n.itn!(2n+1)=π2πtn=0(t)nei(π2)n×eiπ4n!(2n+1)=π2πtn=0(t)nei(nπ2+π4)n!(2n+1)Thusf(t)=π2πtn=0(t)ncos(2n+14π)n!(2n+1)
Commented by maxmathsup by imad last updated on 26/Mar/19
thanks sir smail.
thankssirsmail.

Leave a Reply

Your email address will not be published. Required fields are marked *