Menu Close

let-f-t-0-e-3-x-2-x-2-t-2-dx-with-t-gt-0-1-determine-a-explicit-form-of-f-t-2-find-also-g-t-0-e-3-x-2-x-2-t-2-2-dx-3-find-the-values-of-integrals-




Question Number 60264 by maxmathsup by imad last updated on 19/May/19
let f(t) =∫_0 ^∞    (e^(−3 [x^2 ]) /(x^2  +t^2 ))dx  with t>0  1. determine a explicit form of f(t)  2. find also g(t) =∫_0 ^∞   (e^(−3[x^2 ]) /((x^2  +t^2 )^2 ))dx  3. find the values of integrals ∫_0 ^∞    (e^(−3[x^2 ]) /(x^2  +3))dx  and ∫_0 ^∞   (e^(−3[x^2 ]) /((x^2  +4)^2 )) dx .
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}\:\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dx}\:\:{with}\:{t}>\mathrm{0} \\ $$$$\mathrm{1}.\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\mathrm{2}.\:{find}\:{also}\:{g}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\mathrm{3}.\:{find}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} }\:{dx}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *