Menu Close

let-f-t-0-e-ax-e-bx-x-2-e-tx-2-dx-with-t-gt-0-1-calculate-f-t-2-find-a-simple-form-of-f-t-3-find-the-value-of-0-e-2x-e-x-x-2-e-3x-2-dx-




Question Number 35821 by prof Abdo imad last updated on 24/May/18
let f(t) = ∫_0 ^∞   ((e^(−ax)  −e^(−bx) )/x^2 ) e^(−tx^2 ) dx   with t>0  1) calculate f^′ (t)  2)find a simple form of f(t)  3) find the value of ∫_0 ^∞   ((e^(−2x)   −e^(−x) )/x^2 ) e^(−3x^2 ) dx
letf(t)=0eaxebxx2etx2dxwitht>01)calculatef(t)2)findasimpleformoff(t)3)findthevalueof0e2xexx2e3x2dx
Commented by prof Abdo imad last updated on 31/May/18
f(t) = ∫_(−∞) ^(+∞)    ((e^(−ax)  −e^(−bx) )/x^2 ) e^(−tx^2 )     with t>0
f(t)=+eaxebxx2etx2witht>0
Commented by prof Abdo imad last updated on 31/May/18
3) find the value of  ∫_(−∞) ^(+∞)   ((e^(−2x)  −e^(−x) )/x^2 )e^(−3x^2 )  dx
3)findthevalueof+e2xexx2e3x2dx
Commented by abdo mathsup 649 cc last updated on 01/Jun/18
we have f^′ (t) = −∫_(−∞) ^(+∞) (e^(−ax)  −e^(−bx) ) e^(−tx^2 ) dx  = ∫_(−∞) ^(+∞)    e^(−bx −tx^2 ) dx  −∫_(−∞) ^(+∞)  e^(−ax −tx^2 ) dx but  ∫_(−∞) ^(+∞)   e^(−tx^2 −ax)  dx =∫_(−∞) ^(+∞)    e^(−{ ((√t)x)^2   +2 (a/(2(√t)))x   +(a^2 /(4t)) −(a^2 /(4t))}) dx  = ∫_(−∞) ^(+∞)    e^(−{ ((√t) x  +(a/(2(√t))))^2 } +(a^2 /(4t)))   dx  = e^(a^2 /(4t))   ∫_(−∞) ^(+∞)      e^(−u^2 ) (du/( (√t))) (chang. (√t)x +(a/(2(√t))) =u)  =  (e^(a^2 /(4t)) /( (√t))) (√π)   ⇒ f(t) = (√π)  ∫_. ^t    (e^(a^2 /(4u)) /( (√u)))du +λ   changement (√u)=xgive  f(t) = (√π)  ∫_. ^(√t)    (e^(a^2 /(4x^2 )) /x) 2xdx +λ  = 2(√π)   ∫_. ^(√t)     e^(a^2 /(4x^2 ))  dx +λ
wehavef(t)=+(eaxebx)etx2dx=+ebxtx2dx+eaxtx2dxbut+etx2axdx=+e{(tx)2+2a2tx+a24ta24t}dx=+e{(tx+a2t)2}+a24tdx=ea24t+eu2dut(chang.tx+a2t=u)=ea24ttπf(t)=π.tea24uudu+λchangementu=xgivef(t)=π.tea24x2x2xdx+λ=2π.tea24x2dx+λ
Commented by abdo mathsup 649 cc last updated on 01/Jun/18
error from line 6  ∫_(−∞) ^(+∞)   e^(−tx^2  −ax) dx = ((√π)/( (√t))) e^(a^2 /(4t))   also  ∫_(−∞) ^(+∞)   e^(−tx^2 −bx) dx =((√π)/( (√t))) e^(b^2 /(4t))  ⇒  f^′ (t) = (√π){  (e^(b^2 /(4t)) /( (√t))) −(e^(a^2 /(4t)) /( (√t)))} ⇒  f(t) = (√π)  ∫_1 ^t    ((e^(b^2 /(4u))   −e^(a^2 /(4u)) )/( (√u))) du +c    =_((√u) =x)   (√π)  ∫_1 ^(√t)     ((e^(b^2 /(4x^2 ))   − e^(a^2 /(4x^2 )) )/x) 2x dx +c  = 2(√π)  ∫_1 ^(√t)     { e^(b^2 /(4x^2   ))  − e^(a^2 /(4x^2 )) } dx +c  c =f(1)
errorfromline6+etx2axdx=πtea24talso+etx2bxdx=πteb24tf(t)=π{eb24ttea24tt}f(t)=π1teb24uea24uudu+c=u=xπ1teb24x2ea24x2x2xdx+c=2π1t{eb24x2ea24x2}dx+cc=f(1)

Leave a Reply

Your email address will not be published. Required fields are marked *