Menu Close

let-f-t-0-e-tx-2-arctan-x-2-x-2-dx-with-t-gt-0-1-study-the-existencte-of-f-t-2-calculate-f-t-3-find-a-simple-form-of-f-t-




Question Number 35678 by abdo imad last updated on 21/May/18
let f(t) =∫_0 ^∞   ((e^(−tx^2 )  arctan(x^2 ))/x^2 )dx with t>0  1) study the existencte of f(t)  2)calculate f^′ (t)  3)find a simple form of f(t).
letf(t)=0etx2arctan(x2)x2dxwitht>01)studytheexistencteoff(t)2)calculatef(t)3)findasimpleformoff(t).
Commented by prof Abdo imad last updated on 23/May/18
1) f(t) = ∫_0 ^1   ((e^(−tx^2 )  arctan(x^2 ))/x^2 )dx +∫_1 ^(+∞)  ((e^(−tx^2 )  arctan(x^2 ))/x^2 )dx  = I +J but we have  ((e^(−tx^2 )  arctan(x^2 ))/x^2 )∼ e^(−tx^2 )  ⇒  lim_(x→0)  ((e^(−tx^2 )  arctan(x^2 ))/x^2 ) = 1 so I converges  also we have lim_(x→+∞)   x^2   ((e^(−tx^2 ) arctan(x^2 ))/x^2 ) =0  the comvergence of J is assured so f(t)?exists  for t>0  2) f^′ (t) = ∫_0 ^∞    (∂/∂t){  ((e^(−tx^2 )  arctan(x^2 ))/x^2 )}dx  =−∫_0 ^∞    e^(−tx^2 )  arctan(x^2 )dx .
1)f(t)=01etx2arctan(x2)x2dx+1+etx2arctan(x2)x2dx=I+Jbutwehaveetx2arctan(x2)x2etx2limx0etx2arctan(x2)x2=1soIconvergesalsowehavelimx+x2etx2arctan(x2)x2=0thecomvergenceofJisassuredsof(t)?existsfort>02)f(t)=0t{etx2arctan(x2)x2}dx=0etx2arctan(x2)dx.

Leave a Reply

Your email address will not be published. Required fields are marked *