Question Number 63395 by mathmax by abdo last updated on 03/Jul/19
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{tx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:{with}\:\:\mid{t}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Commented by Prithwish sen last updated on 03/Jul/19
$$\mathrm{f}\left(\mathrm{t}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{tx}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dt} \\ $$$$\mathrm{f}'\left(\mathrm{t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\delta}{\delta\mathrm{t}}\left\{\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{tx}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\right\}\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{tx}\right)}\:\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\mathrm{B}} \left\{\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:+\frac{\mathrm{t}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:−\frac{\mathrm{t}}{\mathrm{1}+\mathrm{tx}}\:\right\}\mathrm{dx},\:\mathrm{B}\rightarrow\infty \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:\left[\:\mathrm{ln}\left(\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{1}+\mathrm{tx}}\right)\:+\:\mathrm{t}\left(\:\mathrm{tan}^{−\mathrm{1}} \mathrm{x}\right)\right]_{\mathrm{0}} ^{\mathrm{B}} \:\:\mathrm{B}\rightarrow\infty \\ $$$$\:\:\:\mathrm{Now},\:\mathrm{lim}_{\mathrm{B}\rightarrow\infty} \:\mathrm{ln}\:\left(\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{1}+\mathrm{tx}}\right)\:\Rightarrow\:\mathrm{lim}_{\mathrm{B}\rightarrow\infty} \mathrm{ln}\left(\frac{\sqrt{\mathrm{1}+\mathrm{B}^{\mathrm{2}} }}{\mathrm{1}+\mathrm{Bt}}\right) \\ $$$$\mathrm{put}\:\mathrm{B}=\:\frac{\mathrm{1}}{\mathrm{n}}\:\Rightarrow\:\mathrm{lim}_{\mathrm{n}\rightarrow\mathrm{0}} \:\mathrm{ln}\left(\frac{\sqrt{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{n}+\mathrm{t}}\right)\Rightarrow\:−\mathrm{ln}\left(\mathrm{t}\right) \\ $$$$\:\therefore\:\:\mathrm{f}\left(\mathrm{t}\right)\:=\:−\int\frac{\mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:\mathrm{dt}+\:\frac{\pi}{\mathrm{2}}\:\int\frac{\mathrm{tdt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}\:} } \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{continue}……. \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 04/Jul/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}^{'} \left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{1}+{tx}\right)}{dx}\:\:{let}\:{decompose}\:{F}\left({x}\right)=\frac{{x}}{\left({tx}+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)} \\ $$$${F}\left({x}\right)=\frac{{a}}{{tx}+\mathrm{1}}\:+\frac{{bx}+{c}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${a}={lim}_{{x}\rightarrow−\frac{\mathrm{1}}{{t}}} \:\:\:\left({tx}+\mathrm{1}\right){F}\left({x}\right)=\frac{−\mathrm{1}}{{t}\left(\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\mathrm{1}\right)}\:=\frac{−{t}^{\mathrm{2}} }{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:=−\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${lim}_{{x}\rightarrow+\infty} {xF}\left({x}\right)=\mathrm{0}=\frac{{a}}{{t}}\:+{b}\:\Rightarrow{b}=−\frac{{a}}{{t}}\:=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\Rightarrow{F}\left({x}\right)=−\frac{{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left({tx}+\mathrm{1}\right)}\:+\frac{\frac{{x}}{\mathrm{1}+{t}^{\mathrm{2}} }+{c}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${F}\left(\mathrm{0}\right)=\mathrm{0}\:=−\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:+{c}\:\Rightarrow{c}\:=\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{−{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left({tx}+\mathrm{1}\right)}\:+\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\frac{{x}+{t}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow \\ $$$${f}^{'} \left({t}\right)\:=\frac{−{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{tx}+\mathrm{1}}\:+\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:+\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\left\{\:\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−{ln}\mid{tx}\:+\mathrm{1}\mid\right]_{\mathrm{0}} ^{+\infty} \right\}\:+\frac{\pi{t}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\left[{ln}\mid\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{tx}+\mathrm{1}}\mid\right]_{\mathrm{0}} ^{+\infty} \:+\frac{\pi{t}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }{ln}\left(\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)\:+\frac{\pi{t}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$=−\frac{{ln}\mid{t}\mid}{\mathrm{1}+{t}^{\mathrm{2}} }\:+\frac{\pi{t}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:\Rightarrow \\ $$$${f}\left({t}\right)\:=−\int_{\mathrm{0}} ^{{t}} \:\:\frac{{lnx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:+\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{t}} \:\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:+{C} \\ $$$$=−\int_{\mathrm{0}} ^{{t}} \:\:\:\frac{{lnx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:+\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\:+{C} \\ $$$${C}={f}\left(\mathrm{0}\right)\:=\mathrm{0}\:\Rightarrow{f}\left({t}\right)\:=\:\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)−\int_{\mathrm{0}} ^{{t}} \:\:\frac{{lnx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:\:\:\left({we}\:{suppose}\:{t}\geqslant\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:={f}\left(\mathrm{1}\right)\:=\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${changement}\:\:{x}\:={tan}\theta\:{give}\: \\ $$$$\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{ln}\left({tan}\theta\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({tan}\theta\right){d}\theta \\ $$$$=\left[\theta\:{ln}\left({tan}\theta\right)\:\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\theta\:\frac{\mathrm{1}+{tan}^{\mathrm{2}} \theta}{{tan}\theta}\:{d}\theta\:=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\theta\:\:\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta\:\frac{{sin}\theta}{{cos}\theta}}{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{\theta}{{cos}\theta\:{sin}\theta}\:{d}\theta\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{\theta}{{sin}\left(\mathrm{2}\theta\right)}{d}\theta\:=_{\mathrm{2}\theta\:={u}} \:\:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{u}}{\mathrm{2}{sin}\left({u}\right)}\:\frac{{du}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{u}}{{sinu}}\:{du}\:=_{{tan}\left(\frac{{u}}{\mathrm{2}}\right)=\alpha} \:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{2}{arctan}\left(\alpha\right)}{\frac{\mathrm{2}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }}\:\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left(\alpha\right)}{\alpha}\:{d}\alpha\:\:\:\:\:…{be}\:{continued}… \\ $$
Commented by mathmax by abdo last updated on 04/Jul/19
$${let}\:{try}\:{another}\:{way}\:{we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{n}} {ln}\left({x}\right){dx}\:\:{by}\left[{parts}\right. \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{\mathrm{2}{n}} {ln}\left({x}\right){dx}\:=\left[\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{x}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{x}^{\mathrm{2}{n}+\mathrm{1}} \:\frac{{dx}}{{x}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{n}} {dx}\:=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${rest}\:{to}\:{find}\:{the}\:{value}\:{of}\:{this}\:{serie}\:\:\:{by}\:{fourier}\:{series}….. \\ $$