Menu Close

let-f-t-0-ln-1-tx-1-x-2-dx-with-t-lt-1-1-determine-a-explicit-form-of-f-t-2-find-the-value-of-0-ln-1-x-1-x-2-dx-




Question Number 63395 by mathmax by abdo last updated on 03/Jul/19
let f(t) =∫_0 ^∞  ((ln(1+tx))/(1+x^2 ))dx   with  ∣t∣<1  1) determine a explicit  form of f(t)  2) find the value of ∫_0 ^∞    ((ln(1+x))/(1+x^2 ))dx
letf(t)=0ln(1+tx)1+x2dxwitht∣<11)determineaexplicitformoff(t)2)findthevalueof0ln(1+x)1+x2dx
Commented by Prithwish sen last updated on 03/Jul/19
f(t)=∫_0 ^∞ ((ln(1+tx))/(1+x^2 )) dt  f′(t) = ∫_0 ^∞ (δ/(δt)){((ln(1+tx))/(1+x^2 )) }dx           = ∫_0 ^∞ (x/((1+x^2 )(1+tx))) dx         = (1/(1+t^2 )) ∫_0 ^B {(x/(1+x^2 )) +(t/(1+x^2 )) −(t/(1+tx)) }dx, B→∞        = (1/(1+t^2 )) [ ln(((√(1+x^2 ))/(1+tx))) + t( tan^(−1) x)]_0 ^B   B→∞     Now, lim_(B→∞)  ln (((√(1+x^2 ))/(1+tx))) ⇒ lim_(B→∞) ln(((√(1+B^2 ))/(1+Bt)))  put B= (1/n) ⇒ lim_(n→0)  ln(((√(n^2 +1))/(n+t)))⇒ −ln(t)   ∴  f(t) = −∫((ln(t))/(1+t^2 )) dt+ (π/2) ∫((tdt)/(1+t^(2 ) ))  to be continue.......
f(t)=0ln(1+tx)1+x2dtf(t)=0δδt{ln(1+tx)1+x2}dx=0x(1+x2)(1+tx)dx=11+t20B{x1+x2+t1+x2t1+tx}dx,B=11+t2[ln(1+x21+tx)+t(tan1x)]0BBNow,limBln(1+x21+tx)limBln(1+B21+Bt)putB=1nlimn0ln(n2+1n+t)ln(t)f(t)=ln(t)1+t2dt+π2tdt1+t2tobecontinue.
Commented by mathmax by abdo last updated on 04/Jul/19
1) we have f^′ (t) =∫_0 ^∞   (x/((x^2 +1)(1+tx)))dx  let decompose F(x)=(x/((tx+1)(x^2  +1)))  F(x)=(a/(tx+1)) +((bx+c)/(x^2  +1))  a=lim_(x→−(1/t))    (tx+1)F(x)=((−1)/(t((1/t^2 )+1))) =((−t^2 )/(t(1+t^2 ))) =−(t/(1+t^2 ))  lim_(x→+∞) xF(x)=0=(a/t) +b ⇒b=−(a/t) =(1/(1+t^2 )) ⇒F(x)=−(t/((1+t^2 )(tx+1))) +(((x/(1+t^2 ))+c)/(x^2  +1))  F(0)=0 =−(t/(1+t^2 )) +c ⇒c =(t/(1+t^2 )) ⇒  F(x)=((−t)/((1+t^2 )(tx+1))) +(1/(1+t^2 )) ((x+t)/(x^2  +1)) ⇒  f^′ (t) =((−t)/(1+t^2 )) ∫_0 ^∞    (dx/(tx+1)) +(1/(2(1+t^2 ))) ∫_0 ^∞    ((2x)/(x^2  +1))dx +(t/(1+t^2 ))∫_0 ^∞   (dx/(1+x^2 ))  =(1/(1+t^2 )){ [(1/2)ln(x^2 +1)−ln∣tx +1∣]_0 ^(+∞) } +((πt)/(2(1+t^2 )))  =(1/(1+t^2 ))[ln∣((√(x^2 +1))/(tx+1))∣]_0 ^(+∞)  +((πt)/(2(1+t^2 ))) =(1/(1+t^2 ))ln((1/t^2 )) +((πt)/(2(1+t^2 )))  =−((ln∣t∣)/(1+t^2 )) +((πt)/(2(1+t^2 ))) ⇒  f(t) =−∫_0 ^t   ((lnx)/(1+x^2 ))dx  +(π/2) ∫_0 ^t   (x/(1+x^2 )) dx +C  =−∫_0 ^t    ((lnx)/(1+x^2 ))dx +(π/4)ln(1+t^2 ) +C  C=f(0) =0 ⇒f(t) = (π/4)ln(1+t^2 )−∫_0 ^t   ((lnx)/(1+x^2 ))dx     (we suppose t≥0)  2) we have ∫_0 ^∞    ((ln(1+x))/(1+x^2 ))dx =f(1) =(π/4)ln(2)−∫_0 ^1  ((ln(x))/(1+x^2 ))dx  changement  x =tanθ give    ((ln(x))/(1+x^2 ))dx = ∫_0 ^(π/4)   ((ln(tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ = ∫_0 ^(π/4)  ln(tanθ)dθ  =[θ ln(tanθ) ]_0 ^(π/4)  −∫_0 ^(π/4)   θ ((1+tan^2 θ)/(tanθ)) dθ =−∫_0 ^(π/4)   θ  (1/(cos^2 θ ((sinθ)/(cosθ))))dθ  =∫_0 ^(π/4)     (θ/(cosθ sinθ)) dθ = 2 ∫_0 ^(π/4)    (θ/(sin(2θ)))dθ =_(2θ =u)    2 ∫_0 ^(π/2)   (u/(2sin(u))) (du/2)  =(1/2) ∫_0 ^(π/2)    (u/(sinu)) du =_(tan((u/2))=α)    (1/2) ∫_0 ^1    ((2arctan(α))/((2α)/(1+α^2 ))) ((2dα)/(1+α^2 ))  =(1/2) ∫_0 ^1    ((arctan(α))/α) dα     ...be continued...
1)wehavef(t)=0x(x2+1)(1+tx)dxletdecomposeF(x)=x(tx+1)(x2+1)F(x)=atx+1+bx+cx2+1a=limx1t(tx+1)F(x)=1t(1t2+1)=t2t(1+t2)=t1+t2limx+xF(x)=0=at+bb=at=11+t2F(x)=t(1+t2)(tx+1)+x1+t2+cx2+1F(0)=0=t1+t2+cc=t1+t2F(x)=t(1+t2)(tx+1)+11+t2x+tx2+1f(t)=t1+t20dxtx+1+12(1+t2)02xx2+1dx+t1+t20dx1+x2=11+t2{[12ln(x2+1)lntx+1]0+}+πt2(1+t2)=11+t2[lnx2+1tx+1]0++πt2(1+t2)=11+t2ln(1t2)+πt2(1+t2)=lnt1+t2+πt2(1+t2)f(t)=0tlnx1+x2dx+π20tx1+x2dx+C=0tlnx1+x2dx+π4ln(1+t2)+CC=f(0)=0f(t)=π4ln(1+t2)0tlnx1+x2dx(wesupposet0)2)wehave0ln(1+x)1+x2dx=f(1)=π4ln(2)01ln(x)1+x2dxchangementx=tanθgiveln(x)1+x2dx=0π4ln(tanθ)1+tan2θ(1+tan2θ)dθ=0π4ln(tanθ)dθ=[θln(tanθ)]0π40π4θ1+tan2θtanθdθ=0π4θ1cos2θsinθcosθdθ=0π4θcosθsinθdθ=20π4θsin(2θ)dθ=2θ=u20π2u2sin(u)du2=120π2usinudu=tan(u2)=α12012arctan(α)2α1+α22dα1+α2=1201arctan(α)αdαbecontinued
Commented by mathmax by abdo last updated on 04/Jul/19
let try another way we have ∫_0 ^∞   ((ln(1+x))/(1+x^2 ))dx =(π/4)ln(2)−∫_0 ^1  ((ln(x))/(1+x^2 ))dx  ∫_0 ^1  ((ln(x))/(1+x^2 ))dx =∫_0 ^1 ln(x)(Σ_(n=0) ^∞  (−1)^n  x^(2n) )dx  =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1  x^(2n) ln(x)dx  by[parts  ∫_0 ^1   x^(2n) ln(x)dx =[(1/(2n+1))x^(2n+1) ln(x)]_0 ^1  −∫_0 ^1  (1/(2n+1))x^(2n+1)  (dx/x)  =−(1/(2n+1)) ∫_0 ^1  x^(2n) dx =−(1/((2n+1)^2 )) ⇒∫_0 ^1   ((ln(x))/(1+x^2 ))dx =−Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))  rest to find the value of this serie   by fourier series.....
lettryanotherwaywehave0ln(1+x)1+x2dx=π4ln(2)01ln(x)1+x2dx01ln(x)1+x2dx=01ln(x)(n=0(1)nx2n)dx=n=0(1)n01x2nln(x)dxby[parts01x2nln(x)dx=[12n+1x2n+1ln(x)]010112n+1x2n+1dxx=12n+101x2ndx=1(2n+1)201ln(x)1+x2dx=n=0(1)n(2n+1)2resttofindthevalueofthisseriebyfourierseries..

Leave a Reply

Your email address will not be published. Required fields are marked *