let-f-t-0-pi-2-ln-cosx-t-sinx-1-calculate-f-0-2-calculate-f-t-then-find-a-simple-form-of-f-t-3-calculate-0-pi-2-ln-cosx-2-sinx-dx-4-calculate-0-pi-2-ln-3-cosx-sinx-d Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40044 by abdo mathsup 649 cc last updated on 15/Jul/18 letf(t)=∫0π2ln(cosx+tsinx)1)calculatef(0)2)calculatef′(t)thenfindasimpleformoff(t)3)calculate∫0π2ln(cosx+2sinx)dx4)calculate∫0π2ln(3cosx+sinx)dx Commented by abdo mathsup 649 cc last updated on 15/Jul/18 f(t)=∫0π2ln(cosx+tsinx)dx. Commented by maxmathsup by imad last updated on 22/Jul/18 1)wehavef(t)=∫0π2ln(cosx+tsinx)dx⇒f(0)=∫0π2ln(cosx)dx=−π2ln(2)(thisvalueisproved)2)f′(t)=∫0π2∂∂t{ln(cosx+tsinx)}dx=∫0π2sinxcosx+tsinxdxhangementtan(x2)=ugivef′(t)=∫012u1+u21−u21+u2+t2u1+u22du1+u2=∫014udu(1+u2){1−u2+2tu}=−∫014udu(1+u2){u2−2tu−1}letdecomposeF(u)=4u(u2+1)(u2−2tu−1)rootsofu2−2tu−1Δ′=t2+1⇒u1=t+1+t2andu2=t−1+t2andF(u)=4u(u−u1)(u−u2)(1+u2)F(u)=au−u1+bu−u2+cu+du2+1a=limu→u1(u−u1)F(u)=4u1(u1−u2)(1+u12)=4(t+1+t2)21+t2(1+(t+1+t2)2b=limu→u2(u−u2)F(u)=4u2(u2−u1)(1+u22)=4(t−1+t2)−21+t2{1+(t−1+t2)2limu→+∞uF(u)=0=a+b+c⇒c=−a−b⇒F(u)=au−u1+bu−u2+(−a−b)u+du2+1F(0)=0=−au1−bu2+d⇒d=au1+bu2….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-1-x-1-e-x-dx-Next Next post: let-S-n-k-0-n-1-k-2k-1-1-give-S-n-interms-of-H-n-2-find-lim-n-S-n-3-let-W-n-k-0-n-1-k-4k-2-1-find-W-n-interms-of-H-n-calculate-lim-n-W-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.