Menu Close

let-f-t-0-pi-2-ln-cosx-t-sinx-1-calculate-f-0-2-calculate-f-t-then-find-a-simple-form-of-f-t-3-calculate-0-pi-2-ln-cosx-2-sinx-dx-4-calculate-0-pi-2-ln-3-cosx-sinx-d




Question Number 40044 by abdo mathsup 649 cc last updated on 15/Jul/18
let f(t) = ∫_0 ^(π/2) ln( cosx +t sinx)  1) calculate f(0)  2) calculate f^′ (t) then find  a simple form of f(t)  3) calculate  ∫_0 ^(π/2) ln(cosx +2 sinx)dx  4) calculate  ∫_0 ^(π/2) ln((√3)cosx +sinx)dx
letf(t)=0π2ln(cosx+tsinx)1)calculatef(0)2)calculatef(t)thenfindasimpleformoff(t)3)calculate0π2ln(cosx+2sinx)dx4)calculate0π2ln(3cosx+sinx)dx
Commented by abdo mathsup 649 cc last updated on 15/Jul/18
f(t) =∫_0 ^(π/2) ln(cosx +t sinx)dx.
f(t)=0π2ln(cosx+tsinx)dx.
Commented by maxmathsup by imad last updated on 22/Jul/18
1) we have f(t)= ∫_0 ^(π/2) ln(cosx+t sinx)dx ⇒f(0)=∫_0 ^(π/2) ln(cosx)dx=−(π/2)ln(2)  (this value is proved )  2)f^′ (t) =∫_0 ^(π/2)    (∂/∂t){ln(cosx +tsinx)}dx  =∫_0 ^(π/2)   ((sinx)/(cosx+tsinx))dx  hangement  tan((x/2)) =u give  f^′ (t) = ∫_0 ^1       (((2u)/(1+u^2 ))/(((1−u^2 )/(1+u^2 )) +t ((2u)/(1+u^2 ))))  ((2du)/(1+u^2 )) = ∫_0 ^1     ((4u du)/((1+u^2 ){1−u^2 +2tu}))  = −∫_0 ^1     ((4udu)/((1+u^2 ){u^2 −2tu−1} ))   let decompose F(u) =   ((4u)/((u^2  +1)(u^2 −2tu −1)))  roots of  u^2  −2tu −1  Δ^′  = t^2  +1 ⇒u_1 = t+(√(1+t^2 ))   and  u_2 =t−(√(1+t^2 ))      and F(u)= ((4u)/((u−u_1 )(u−u_2 )(1+u^2 )))  F(u) = (a/(u−u_1 )) +(b/(u−u_2 )) + ((cu +d)/(u^2  +1))  a =lim_(u→u_1 )   (u−u_1 )F(u) =   ((4u_1 )/((u_1 −u_2 )(1+u_1 ^2 ))) = ((4(t+(√(1+t^2 ))))/(2(√(1+t^2 ))( 1+(t+(√(1+t^2 )))^2 ))  b =lim_(u→u_2 )    (u−u_2 )F(u) =((4u_2 )/((u_2 −u_1 )(1+u_2 ^2 ))) =((4(t−(√(1+t^2 ))))/(−2(√(1+t^2 )){1+(t−(√(1+t^2 )))^2 ))  lim_(u→+∞) u F(u) =0 =a+b +c ⇒c =−a−b ⇒  F(u) = (a/(u−u_1 )) +(b/(u−u_2 )) +(((−a−b)u +d)/(u^2  +1))  F(0) =0 =−(a/u_1 ) −(b/u_2 )  +d  ⇒d = (a/u_1 ) +(b/u_2 )   ....be continued...
1)wehavef(t)=0π2ln(cosx+tsinx)dxf(0)=0π2ln(cosx)dx=π2ln(2)(thisvalueisproved)2)f(t)=0π2t{ln(cosx+tsinx)}dx=0π2sinxcosx+tsinxdxhangementtan(x2)=ugivef(t)=012u1+u21u21+u2+t2u1+u22du1+u2=014udu(1+u2){1u2+2tu}=014udu(1+u2){u22tu1}letdecomposeF(u)=4u(u2+1)(u22tu1)rootsofu22tu1Δ=t2+1u1=t+1+t2andu2=t1+t2andF(u)=4u(uu1)(uu2)(1+u2)F(u)=auu1+buu2+cu+du2+1a=limuu1(uu1)F(u)=4u1(u1u2)(1+u12)=4(t+1+t2)21+t2(1+(t+1+t2)2b=limuu2(uu2)F(u)=4u2(u2u1)(1+u22)=4(t1+t2)21+t2{1+(t1+t2)2limu+uF(u)=0=a+b+cc=abF(u)=auu1+buu2+(ab)u+du2+1F(0)=0=au1bu2+dd=au1+bu2.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *