Question Number 40044 by abdo mathsup 649 cc last updated on 15/Jul/18
$${let}\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\:{cosx}\:+{t}\:{sinx}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({t}\right)\:{then}\:{find}\:\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\:+\mathrm{2}\:{sinx}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\sqrt{\mathrm{3}}{cosx}\:+{sinx}\right){dx} \\ $$
Commented by abdo mathsup 649 cc last updated on 15/Jul/18
$${f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\:+{t}\:{sinx}\right){dx}. \\ $$
Commented by maxmathsup by imad last updated on 22/Jul/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}+{t}\:{sinx}\right){dx}\:\Rightarrow{f}\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\right){dx}=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right) \\ $$$$\left({this}\:{value}\:{is}\:{proved}\:\right) \\ $$$$\left.\mathrm{2}\right){f}^{'} \left({t}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{\partial}{\partial{t}}\left\{{ln}\left({cosx}\:+{tsinx}\right)\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sinx}}{{cosx}+{tsinx}}{dx}\:\:{hangement}\:\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)\:={u}\:{give} \\ $$$${f}^{'} \left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}{\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\:+{t}\:\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\:\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{4}{u}\:{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left\{\mathrm{1}−{u}^{\mathrm{2}} +\mathrm{2}{tu}\right\}} \\ $$$$=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{4}{udu}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left\{{u}^{\mathrm{2}} −\mathrm{2}{tu}−\mathrm{1}\right\}\:}\:\:\:{let}\:{decompose}\:{F}\left({u}\right)\:=\:\:\:\frac{\mathrm{4}{u}}{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\left({u}^{\mathrm{2}} −\mathrm{2}{tu}\:−\mathrm{1}\right)} \\ $$$${roots}\:{of}\:\:{u}^{\mathrm{2}} \:−\mathrm{2}{tu}\:−\mathrm{1} \\ $$$$\Delta^{'} \:=\:{t}^{\mathrm{2}} \:+\mathrm{1}\:\Rightarrow{u}_{\mathrm{1}} =\:{t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\:\:{and}\:\:{u}_{\mathrm{2}} ={t}−\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\:\:\:\:\:{and}\:{F}\left({u}\right)=\:\frac{\mathrm{4}{u}}{\left({u}−{u}_{\mathrm{1}} \right)\left({u}−{u}_{\mathrm{2}} \right)\left(\mathrm{1}+{u}^{\mathrm{2}} \right)} \\ $$$${F}\left({u}\right)\:=\:\frac{{a}}{{u}−{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}−{u}_{\mathrm{2}} }\:+\:\frac{{cu}\:+{d}}{{u}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${a}\:={lim}_{{u}\rightarrow{u}_{\mathrm{1}} } \:\:\left({u}−{u}_{\mathrm{1}} \right){F}\left({u}\right)\:=\:\:\:\frac{\mathrm{4}{u}_{\mathrm{1}} }{\left({u}_{\mathrm{1}} −{u}_{\mathrm{2}} \right)\left(\mathrm{1}+{u}_{\mathrm{1}} ^{\mathrm{2}} \right)}\:=\:\frac{\mathrm{4}\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)}{\mathrm{2}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\left(\:\mathrm{1}+\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)^{\mathrm{2}} \right.} \\ $$$${b}\:={lim}_{{u}\rightarrow{u}_{\mathrm{2}} } \:\:\:\left({u}−{u}_{\mathrm{2}} \right){F}\left({u}\right)\:=\frac{\mathrm{4}{u}_{\mathrm{2}} }{\left({u}_{\mathrm{2}} −{u}_{\mathrm{1}} \right)\left(\mathrm{1}+{u}_{\mathrm{2}} ^{\mathrm{2}} \right)}\:=\frac{\mathrm{4}\left({t}−\sqrt{\left.\mathrm{1}+{t}^{\mathrm{2}} \right)}\right.}{−\mathrm{2}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\left\{\mathrm{1}+\left({t}−\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)^{\mathrm{2}} \right.} \\ $$$${lim}_{{u}\rightarrow+\infty} {u}\:{F}\left({u}\right)\:=\mathrm{0}\:={a}+{b}\:+{c}\:\Rightarrow{c}\:=−{a}−{b}\:\Rightarrow \\ $$$${F}\left({u}\right)\:=\:\frac{{a}}{{u}−{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}−{u}_{\mathrm{2}} }\:+\frac{\left(−{a}−{b}\right){u}\:+{d}}{{u}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${F}\left(\mathrm{0}\right)\:=\mathrm{0}\:=−\frac{{a}}{{u}_{\mathrm{1}} }\:−\frac{{b}}{{u}_{\mathrm{2}} }\:\:+{d}\:\:\Rightarrow{d}\:=\:\frac{{a}}{{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}_{\mathrm{2}} }\:\:\:….{be}\:{continued}… \\ $$