Menu Close

let-f-t-0-sin-x-2-e-tx-2-x-2-dx-with-t-gt-0-find-a-simple-form-of-f-t-




Question Number 33978 by abdo imad last updated on 28/Apr/18
let f(t) = ∫_0 ^∞    ((sin(x^2 )e^(−tx^2 ) )/x^2 ) dx       with t>0  find a simple form of f^′ (t) .
letf(t)=0sin(x2)etx2x2dxwitht>0findasimpleformoff(t).
Commented by math khazana by abdo last updated on 01/May/18
after verifying condition of derivabity for f we have  f^′ (t) =∫_0 ^∞ −x^2    ((sin(x^2 )e^(−tx^2 ) )/x^2 )dx  =−∫_0 ^∞  sin(x^2 ) e^(−tx^2 ) dx ⇒ 2 f^′ (x)= −∫_(−∞) ^(+∞)  sin(x^2 )e^(−tx^2 ) dx  =Im(∫_(−∞) ^(+∞)   e^(−ix^2 )  e^(−tx^2 ) dx) but  ∫_(−∞) ^(+∞)    e^(−ix^2 ) e^(−tx^2 ) dx = ∫_(−∞) ^(+∞)    e^(−(t +i)x^2 ) dx  =_((√(t+i))x=u)  ∫_(−∞) ^(+∞)    e^(−u^2 )  (du/( (√(t+i)))) = ((√π)/( (√(t+i))))  but  ∣t+i∣=(√(1+t^2  ))   ⇒t+i =(√(1+t^2 ))( (t/( (√(1+t^2 )))) +(i/( (√(1+t^2 )))))  =r e^(iθ)  ⇒r=(√(1+t^2 ))   and cosθ= (t/( (√(1+t^2 ))))  and   sinθ =(1/( (√(1+t^2 )))) ⇒tanθ= (1/t) ⇒θ=arctan((1/t))  t+i =(1+t^2 )^(1/2)  e^(i((π/2)−arctant))  ⇒  (√(t+i))= (1+t^2 )^(1/4)   e^(i( (π/4) −(1/2)arctant))   (1/( (√(t+i)))) = (1+t^2 )^(−(1/4))   e^(i((1/2)arctant−(π/4)))  ⇒  2f^′ (x)= (1+t^2 )^(−(1/4))   sin((1/2)arctant −(π/4)) ⇒  f^′ (x) = (1/2) (1+t^2 )^(−(1/4))  sin((1/2) arctant −(π/4)) .
afterverifyingconditionofderivabityforfwehavef(t)=0x2sin(x2)etx2x2dx=0sin(x2)etx2dx2f(x)=+sin(x2)etx2dx=Im(+eix2etx2dx)but+eix2etx2dx=+e(t+i)x2dx=t+ix=u+eu2dut+i=πt+ibutt+i∣=1+t2t+i=1+t2(t1+t2+i1+t2)=reiθr=1+t2andcosθ=t1+t2andsinθ=11+t2tanθ=1tθ=arctan(1t)t+i=(1+t2)12ei(π2arctant)t+i=(1+t2)14ei(π412arctant)1t+i=(1+t2)14ei(12arctantπ4)2f(x)=(1+t2)14sin(12arctantπ4)f(x)=12(1+t2)14sin(12arctantπ4).
Commented by math khazana by abdo last updated on 01/May/18
f^′ (t)= (1/2)(1+t^2 )^(−(1/4))  sin((1/2) arctant −(π/4)) .
f(t)=12(1+t2)14sin(12arctantπ4).
Answered by candre last updated on 30/Apr/18
f(t)=∫_0 ^∞ ((sin x^2 e^(−tx^2 ) )/x^2 )dx  lets use the fact that  ∫_(−∞) ^(+∞) e^(−ax^2 ) dx=(√(π/a))  sin x=((e^(ix) −e^(−ix) )/(2i))  we get  (df/dt)=∫_0 ^∞ (∂/∂t)((sin x^2 e^(−tx^2 ) )/x^2 )dx  =−∫_0 ^∞ sin x^2 e^(−tx^2 ) dx  =−∫_0 ^∞ ((e^(ix^2 ) −e^(−ix^2 ) )/(2i))e^(−tx^2 ) dx  =−(1/(2i))[∫_0 ^∞ e^((i−t)x^2 ) dx−∫_0 ^∞ e^(−(i+t)x^2 ) dx]  =((√π)/(4i))((√(1/(t+i)))−(√(1/(t−i))))
f(t)=0sinx2etx2x2dxletsusethefactthat+eax2dx=πasinx=eixeix2iwegetdfdt=0tsinx2etx2x2dx=0sinx2etx2dx=0eix2eix22ietx2dx=12i[0e(it)x2dx0e(i+t)x2dx]=π4i(1t+i1ti)

Leave a Reply

Your email address will not be published. Required fields are marked *