let-f-t-0-sin-x-2-e-tx-2-x-2-dx-with-t-gt-0-find-a-simple-form-of-f-t- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33978 by abdo imad last updated on 28/Apr/18 letf(t)=∫0∞sin(x2)e−tx2x2dxwitht>0findasimpleformoff′(t). Commented by math khazana by abdo last updated on 01/May/18 afterverifyingconditionofderivabityforfwehavef′(t)=∫0∞−x2sin(x2)e−tx2x2dx=−∫0∞sin(x2)e−tx2dx⇒2f′(x)=−∫−∞+∞sin(x2)e−tx2dx=Im(∫−∞+∞e−ix2e−tx2dx)but∫−∞+∞e−ix2e−tx2dx=∫−∞+∞e−(t+i)x2dx=t+ix=u∫−∞+∞e−u2dut+i=πt+ibut∣t+i∣=1+t2⇒t+i=1+t2(t1+t2+i1+t2)=reiθ⇒r=1+t2andcosθ=t1+t2andsinθ=11+t2⇒tanθ=1t⇒θ=arctan(1t)t+i=(1+t2)12ei(π2−arctant)⇒t+i=(1+t2)14ei(π4−12arctant)1t+i=(1+t2)−14ei(12arctant−π4)⇒2f′(x)=(1+t2)−14sin(12arctant−π4)⇒f′(x)=12(1+t2)−14sin(12arctant−π4). Commented by math khazana by abdo last updated on 01/May/18 f′(t)=12(1+t2)−14sin(12arctant−π4). Answered by candre last updated on 30/Apr/18 f(t)=∫∞0sinx2e−tx2x2dxletsusethefactthat∫+∞−∞e−ax2dx=πasinx=eix−e−ix2iwegetdfdt=∫∞0∂∂tsinx2e−tx2x2dx=−∫∞0sinx2e−tx2dx=−∫∞0eix2−e−ix22ie−tx2dx=−12i[∫∞0e(i−t)x2dx−∫∞0e−(i+t)x2dx]=π4i(1t+i−1t−i) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-a-polynome-solution-of-the-diifferencial-equation-y-y-x-12-Next Next post: 1-let-consider-f-x-cosx-pi-periodix-developp-f-at-fourier-serie-2-find-the-valueof-n-1-1-n-4n-2-1-3-find-the-value-of-n-1-1-4n-2-1-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.