Menu Close

let-F-t-0-sinx-x-1-x-2-e-tx-1-x-2-dx-witht-0-1-caculate-dF-dt-t-2-find-a-simple-form-of-F-t-3-find-the-value-of-0-sinx-x-1-x-2-dx-




Question Number 39368 by maxmathsup by imad last updated on 05/Jul/18
let F(t)= ∫_0 ^(+∞)    ((sinx)/(x(1+x^2 ))) e^(−tx(1+x^2 )) dx  witht≥0  1) caculate  (dF/dt)(t)  2) find a simple form of F(t)  3) find the value of ∫_0 ^∞      ((sinx)/(x(1+x^2 )dx )).
letF(t)=0+sinxx(1+x2)etx(1+x2)dxwitht01)caculatedFdt(t)2)findasimpleformofF(t)3)findthevalueof0sinxx(1+x2)dx.
Commented by math khazana by abdo last updated on 08/Jul/18
1) we have (dF/dt)(t)=−∫_0 ^(+∞)  sinx e^(−tx−tx^3 ) dx  2) let I  = ∫_0 ^∞     ((sinx)/(x(1+x^2 )))dx  2I =∫_(−∞) ^(+∞)    ((sinx)/(x(1+x^2 )))dx = Im ( ∫_(−∞) ^(+∞)   (e^(ix) /(x(1+x^2 )))dx)  let ϕ(z) = (e^(iz) /(z(1+z^2 ))) the poles of ϕ are 0,i ,−i  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{ Res(ϕ,0) +Res(ϕ,i)}  Res(ϕ,0) = lim_(z→0) zϕ(z)=1  Res(ϕ,i) = lim_(z→i) (z−i)ϕ(z) = (e^(−1) /(i(2i))) =−(e^(−1) /2)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ 1 −(e^(−1) /2)} ⇒  2I = Im( ∫_(−∞) ^(+∞)  ϕ(z)dz )=2π{1−(e^(−1) /2)}  ⇒ I  = π{ 1−(e^(−1) /2)} .
1)wehavedFdt(t)=0+sinxetxtx3dx2)letI=0sinxx(1+x2)dx2I=+sinxx(1+x2)dx=Im(+eixx(1+x2)dx)letφ(z)=eizz(1+z2)thepolesofφare0,i,i+φ(z)dz=2iπ{Res(φ,0)+Res(φ,i)}Res(φ,0)=limz0zφ(z)=1Res(φ,i)=limzi(zi)φ(z)=e1i(2i)=e12+φ(z)dz=2iπ{1e12}2I=Im(+φ(z)dz)=2π{1e12}I=π{1e12}.

Leave a Reply

Your email address will not be published. Required fields are marked *