Question Number 39368 by maxmathsup by imad last updated on 05/Jul/18
$${let}\:{F}\left({t}\right)=\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{e}^{−{tx}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} {dx}\:\:{witht}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{caculate}\:\:\frac{{dF}}{{dt}}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{F}\left({t}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx}\:}. \\ $$
Commented by math khazana by abdo last updated on 08/Jul/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\frac{{dF}}{{dt}}\left({t}\right)=−\int_{\mathrm{0}} ^{+\infty} \:{sinx}\:{e}^{−{tx}−{tx}^{\mathrm{3}} } {dx} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:=\:{Im}\:\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{ix}} }{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\right) \\ $$$${let}\:\varphi\left({z}\right)\:=\:\frac{{e}^{{iz}} }{{z}\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\mathrm{0},{i}\:,−{i} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,\mathrm{0}\right)\:+{Res}\left(\varphi,{i}\right)\right\} \\ $$$${Res}\left(\varphi,\mathrm{0}\right)\:=\:{lim}_{{z}\rightarrow\mathrm{0}} {z}\varphi\left({z}\right)=\mathrm{1} \\ $$$${Res}\left(\varphi,{i}\right)\:=\:{lim}_{{z}\rightarrow{i}} \left({z}−{i}\right)\varphi\left({z}\right)\:=\:\frac{{e}^{−\mathrm{1}} }{{i}\left(\mathrm{2}{i}\right)}\:=−\frac{{e}^{−\mathrm{1}} }{\mathrm{2}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:\mathrm{1}\:−\frac{{e}^{−\mathrm{1}} }{\mathrm{2}}\right\}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\:{Im}\left(\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:\right)=\mathrm{2}\pi\left\{\mathrm{1}−\frac{{e}^{−\mathrm{1}} }{\mathrm{2}}\right\} \\ $$$$\Rightarrow\:{I}\:\:=\:\pi\left\{\:\mathrm{1}−\frac{{e}^{−\mathrm{1}} }{\mathrm{2}}\right\}\:. \\ $$