Menu Close

let-f-t-1-a-2-t-2-witha-gt-0-give-the-fourier-transformfor-f-




Question Number 33704 by math khazana by abdo last updated on 22/Apr/18
let f(t) = (1/(a^2  +t^2 ))  witha>0 give the fourier  transformfor f .
$${let}\:{f}\left({t}\right)\:=\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }\:\:{witha}>\mathrm{0}\:{give}\:{the}\:{fourier} \\ $$$${transformfor}\:{f}\:. \\ $$$$ \\ $$
Commented by prof Abdo imad last updated on 27/Apr/18
we know that F(f(x)) =(1/( (√(2π)))) ∫_(−∞) ^(+∞) f(t) e^(−ixt) dt so  for f(x)= (1/(a^2  +x^2 )) we get  F(f(x))= (1/( (√(2π)))) ∫_(−∞) ^(+∞)    (e^(−ixt) /(a^2  +t^2 )) dt  let consider the  complex function ϕ(z) =  (e^(−ixz) /(z^2  +a^2 )) the poles of  ϕ are ia and −ia (simples) so  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,ia)  ϕ(z)=  (e^(−ixz) /((z−ia)(z+ia))) ⇒Res(ϕ,ia)= (e^(−ix(ia)) /(2ia))  =  (e^(ax) /(2ia)) ⇒ ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (e^(ax) /(2ia)) = (π/a) e^(ax)  ⇒  F(f(x))= (1/( (√(2π)))) (π/a) e^(ax)  =(√(π^2 /(2π)))  (e^(ax) /a)  ★F(f(x)(t)= (√(π/2))  (e^(ax) /a) ★
$${we}\:{know}\:{that}\:{F}\left({f}\left({x}\right)\right)\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}}\:\int_{−\infty} ^{+\infty} {f}\left({t}\right)\:{e}^{−{ixt}} {dt}\:{so} \\ $$$${for}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:{we}\:{get} \\ $$$${F}\left({f}\left({x}\right)\right)=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{−{ixt}} }{{a}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }\:{dt}\:\:{let}\:{consider}\:{the} \\ $$$${complex}\:{function}\:\varphi\left({z}\right)\:=\:\:\frac{{e}^{−{ixz}} }{{z}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }\:{the}\:{poles}\:{of} \\ $$$$\varphi\:{are}\:{ia}\:{and}\:−{ia}\:\left({simples}\right)\:{so} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{ia}\right) \\ $$$$\varphi\left({z}\right)=\:\:\frac{{e}^{−{ixz}} }{\left({z}−{ia}\right)\left({z}+{ia}\right)}\:\Rightarrow{Res}\left(\varphi,{ia}\right)=\:\frac{{e}^{−{ix}\left({ia}\right)} }{\mathrm{2}{ia}} \\ $$$$=\:\:\frac{{e}^{{ax}} }{\mathrm{2}{ia}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{{ax}} }{\mathrm{2}{ia}}\:=\:\frac{\pi}{{a}}\:{e}^{{ax}} \:\Rightarrow \\ $$$${F}\left({f}\left({x}\right)\right)=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}}\:\frac{\pi}{{a}}\:{e}^{{ax}} \:=\sqrt{\frac{\pi^{\mathrm{2}} }{\mathrm{2}\pi}}\:\:\frac{{e}^{{ax}} }{{a}} \\ $$$$\bigstar{F}\left({f}\left({x}\right)\left({t}\right)=\:\sqrt{\frac{\pi}{\mathrm{2}}}\:\:\frac{{e}^{{ax}} }{{a}}\:\bigstar\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *