Menu Close

let-f-t-1-a-2-t-2-witha-gt-0-give-the-fourier-transformfor-f-




Question Number 33704 by math khazana by abdo last updated on 22/Apr/18
let f(t) = (1/(a^2  +t^2 ))  witha>0 give the fourier  transformfor f .
letf(t)=1a2+t2witha>0givethefouriertransformforf.
Commented by prof Abdo imad last updated on 27/Apr/18
we know that F(f(x)) =(1/( (√(2π)))) ∫_(−∞) ^(+∞) f(t) e^(−ixt) dt so  for f(x)= (1/(a^2  +x^2 )) we get  F(f(x))= (1/( (√(2π)))) ∫_(−∞) ^(+∞)    (e^(−ixt) /(a^2  +t^2 )) dt  let consider the  complex function ϕ(z) =  (e^(−ixz) /(z^2  +a^2 )) the poles of  ϕ are ia and −ia (simples) so  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,ia)  ϕ(z)=  (e^(−ixz) /((z−ia)(z+ia))) ⇒Res(ϕ,ia)= (e^(−ix(ia)) /(2ia))  =  (e^(ax) /(2ia)) ⇒ ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (e^(ax) /(2ia)) = (π/a) e^(ax)  ⇒  F(f(x))= (1/( (√(2π)))) (π/a) e^(ax)  =(√(π^2 /(2π)))  (e^(ax) /a)  ★F(f(x)(t)= (√(π/2))  (e^(ax) /a) ★
weknowthatF(f(x))=12π+f(t)eixtdtsoforf(x)=1a2+x2wegetF(f(x))=12π+eixta2+t2dtletconsiderthecomplexfunctionφ(z)=eixzz2+a2thepolesofφareiaandia(simples)so+φ(z)dz=2iπRes(φ,ia)φ(z)=eixz(zia)(z+ia)Res(φ,ia)=eix(ia)2ia=eax2ia+φ(z)dz=2iπeax2ia=πaeaxF(f(x))=12ππaeax=π22πeaxaF(f(x)(t)=π2eaxa

Leave a Reply

Your email address will not be published. Required fields are marked *