Menu Close

let-f-x-0-1-arctan-1-xt-t-2-1-dt-determine-a-explicit-form-for-f-x-2-calculate-0-1-arctan-1-2t-1-t-2-dt-




Question Number 62437 by mathsolverby Abdo last updated on 21/Jun/19
let f(x) =∫_0 ^1  ((arctan(1+xt))/(t^2  +1))dt  determine a explicit form for f(x)  2)calculate ∫_0 ^1  ((arctan(1+2t))/(1+t^2 ))dt
letf(x)=01arctan(1+xt)t2+1dtdetermineaexplicitformforf(x)2)calculate01arctan(1+2t)1+t2dt
Commented by mathmax by abdo last updated on 28/Jun/19
1) we have f^′ (x) =∫_0 ^1   (t/((1+x^2 t^2 )(t^2  +1)))dt =_(xt =u)      ∫_0 ^x    (u/(x(1+u^2 )(1+(u^2 /x^2 )))) (du/x)  =∫_0 ^x     ((udu)/((1+u^2 )(x^2  +u^2 )))  let decompose F(u) =(u/((u^2  +1)(u^2  +x^2 ))) ⇒  F(u) =((au +b)/(u^2  +1)) +((cu +d)/(u^2  +x^2 ))  F(−u) =−F(u)⇒((−au +b)/(u^2  +1)) +((−cu +d)/(u^2  +x^2 )) =((−au−b)/(u^2  +1)) +((−cu−d)/(u^2  +x^2 )) ⇒b=d =0 ⇒  F(u) =((au)/(u^2  +1)) +((cu)/(u^2  +x^2 ))  lim_(u→+∞) uF(u) =0 =a+c ⇒c=−a ⇒F(u) =((au)/(u^2  +1)) −((au)/(u^2  +x^2 ))  F(1) =(1/(2(x^2  +1))) =(a/2) −(a/(x^2  +1)) ⇒((ax^2  +a−2a)/(2(x^(2 ) +1))) =(1/(2(x^2  +1))) ⇒ax^2 −a =1 ⇒  a(x^2 −1) =1 ⇒ a =(1/(x^2 −1))   (we suppose x≠+^− 1 and x≠0) ⇒  F(u) =(1/(x^2 −1)){(u/(u^2  +1)) −(u/(u^2  +x^2 ))}⇒f^′ (x) =∫_0 ^x  F(u)du  =(1/(x^2 −1)) { ∫_0 ^x   ((udu)/(u^2  +1)) −∫_0 ^x   ((udu)/(u^2  +x^2 ))}  we have  ∫_0 ^x  ((udu)/(u^2  +1)) =[(1/2)ln(u^2  +1)]_0 ^x  =(1/2)ln(x^2  +1)  ∫_0 ^x   ((udu)/(u^2  +x^2 )) =_(u =xα)     ∫_0 ^1     ((xα xdα)/(x^2 (1+α^2 ))) =∫_0 ^1  ((αdα)/(1+α^2 )) =[(1/2)ln(1+α^2 )]_0 ^1  =((ln(2))/2) ⇒  f^′ (x) =((ln(x^2  +1))/(2(x^2 −1))) −((ln(2))/(2(x^2 −1))) ⇒f(x) =∫  ((ln(1+x^2 ))/(2(x^2 −1)))dx −((ln(2))/2) ∫  (dx/(x^2  −1)) +c  .....be continued....
1)wehavef(x)=01t(1+x2t2)(t2+1)dt=xt=u0xux(1+u2)(1+u2x2)dux=0xudu(1+u2)(x2+u2)letdecomposeF(u)=u(u2+1)(u2+x2)F(u)=au+bu2+1+cu+du2+x2F(u)=F(u)au+bu2+1+cu+du2+x2=aubu2+1+cudu2+x2b=d=0F(u)=auu2+1+cuu2+x2limu+uF(u)=0=a+cc=aF(u)=auu2+1auu2+x2F(1)=12(x2+1)=a2ax2+1ax2+a2a2(x2+1)=12(x2+1)ax2a=1a(x21)=1a=1x21(wesupposex+1andx0)F(u)=1x21{uu2+1uu2+x2}f(x)=0xF(u)du=1x21{0xuduu2+10xuduu2+x2}wehave0xuduu2+1=[12ln(u2+1)]0x=12ln(x2+1)0xuduu2+x2=u=xα01xαxdαx2(1+α2)=01αdα1+α2=[12ln(1+α2)]01=ln(2)2f(x)=ln(x2+1)2(x21)ln(2)2(x21)f(x)=ln(1+x2)2(x21)dxln(2)2dxx21+c..becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *