let-f-x-0-1-cos-xt-2-t-2-e-xt-2-dt-with-x-gt-0-1-find-a-simple-form-of-f-x-2-calculate-0-1-cos-2t-2-t-2-e-3t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 38454 by maxmathsup by imad last updated on 25/Jun/18 letf(x)=∫0∞1−cos(xt2)t2e−xt2dtwithx>01)findasimpleformoff(x)2)calculate∫0∞1−cos(2t2)t2e−3t2dt. Commented by math khazana by abdo last updated on 26/Jun/18 theQisf(x)=∫0∞1−cos(at2)t2e−xt2dt Commented by abdo.msup.com last updated on 27/Jun/18 wehavef(x)=∫0∞1−cos(at2)t2e−xt2dt⇒f′(x)=−∫0∞(1−cos(at2)e−xt2dt=∫0∞cos(at2)e−xt2dt−∫0∞e−xt2dtbut∫0∞e−xt2dt=xt=u∫0∞e−u2dux=1x∫0∞e−u2du=π2xand∫0∞cos(at2)e−xt2dt=12∫−∞+∞cos(at2)e−xt2dt=12Re(∫−∞∞eiat2−xt2dt)but∫−∞+∞e(−x+ia)t2dt=−x+iat=u∫−∞+∞e−u2du−x+ia=π−x+iabut−x+ia=x2+a2{−xx2+a2+iax2+a2}=reiθ⇒r=x2+a2andtanθ=−ax⇒θ=−arctan(ax)⇒−x+ia=re−iarctan(ax)⇒−x+ia=(x2+a2)14e−i2arctan(ax)⇒∫−∞+∞e(−x+ia)t2dt=π(x2+a2)−14ei2arctan(ax)f′(x)=π2(x2+a2)−14cos(12arctan(ax))⇒f(x)=π2∫.x(t2+a2)−14cos(12arctan(at))dt+c Commented by abdo.msup.com last updated on 27/Jun/18 erroratthefinallinesf′(x)=π2(x2+a2)−14cos{12arctan(ax)}−π2x⇒f(x)=π2∫.x(t2+a2)−14cos(12arctan(at))dt−πx+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-f-x-0-1-cos-xt-t-e-xt-dt-with-x-gt-0-1-find-asimple-form-of-f-x-2-calculate-0-1-cos-pit-t-e-t-dt-3-calculate-0-1-cos-3t-t-e-2t-dt-Next Next post: solve-the-d-e-y-xe-2x-y-cos-3x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.