Menu Close

let-f-x-0-1-cos-xt-2-t-2-e-xt-2-dt-with-x-gt-0-1-find-a-simple-form-of-f-x-2-calculate-0-1-cos-2t-2-t-2-e-3t-2-dt-




Question Number 38454 by maxmathsup by imad last updated on 25/Jun/18
let f(x)=∫_0 ^∞    ((1−cos(xt^2 ))/t^2 ) e^(−xt^2 ) dt  with x>0  1) find a simple form of f(x)  2) calculate ∫_0 ^∞    ((1−cos(2t^2 ))/t^2 ) e^(−3t^2 ) dt .
letf(x)=01cos(xt2)t2ext2dtwithx>01)findasimpleformoff(x)2)calculate01cos(2t2)t2e3t2dt.
Commented by math khazana by abdo last updated on 26/Jun/18
the Q is  f(x)=∫_0 ^∞   ((1−cos(at^2 ))/t^2 ) e^(−xt^2 ) dt
theQisf(x)=01cos(at2)t2ext2dt
Commented by abdo.msup.com last updated on 27/Jun/18
wehave f(x)=∫_0 ^∞  ((1−cos(at^2 ))/t^2 ) e^(−xt^2 ) dt⇒  f^′ (x)= −∫_0 ^∞  (1−cos(at^2 )e^(−xt^2 ) dt  =∫_0 ^∞   cos(at^2 )e^(−xt^2 ) dt  −∫_0 ^∞    e^(−xt^2 ) dt but  ∫_0 ^∞   e^(−xt^2 ) dt =_((√x)t=u) ∫_0 ^∞   e^(−u^2 )  (du/( (√x)))  =(1/( (√x)))∫_0 ^∞   e^(−u^2 ) du =(π/(2(√x)))  and  ∫_0 ^∞    cos(at^2 )e^(−xt^2 ) dt=(1/2) ∫_(−∞) ^(+∞)  cos(at^2 )e^(−xt^2 ) dt  =(1/2) Re( ∫_(−∞) ^∞   e^(iat^2 −xt^2 ) dt) but  ∫_(−∞) ^(+∞)   e^((−x+ia)t^2 ) dt =_((√(−x+ia))t=u) ∫_(−∞) ^(+∞)  e^(−u^2 )  (du/( (√(−x+ia))))  =((√π)/( (√(−x+ia))))  but   −x+ia=(√(x^2  +a^2 )){((−x)/( (√(x^2  +a^2 )))) +((ia)/( (√(x^2  +a^2 ))))}  =r e^(iθ)  ⇒r=(√(x^2 +a^2 ))  and tanθ=−(a/x) ⇒  θ=−arctan((a/x))⇒−x+ia=r e^(−iarctan((a/x)))   ⇒(√(−x+ia))=(x^2  +a^2 )^(1/4)  e^(−(i/2)arctan((a/x))) ⇒  ∫_(−∞) ^(+∞)   e^((−x+ia)t^2 ) dt=(√π) (x^2  +a^2 )^(−(1/4)) e^((i/2)arctan((a/x)))   f^′ (x)=((√π)/2)(x^2  +a^2 )^(−(1/4))  cos((1/2)arctan((a/x)))⇒  f(x)=((√π)/2) ∫_. ^x (t^2  +a^2 )^(−(1/4)) cos((1/2)arctan((a/t)))dt  +c
wehavef(x)=01cos(at2)t2ext2dtf(x)=0(1cos(at2)ext2dt=0cos(at2)ext2dt0ext2dtbut0ext2dt=xt=u0eu2dux=1x0eu2du=π2xand0cos(at2)ext2dt=12+cos(at2)ext2dt=12Re(eiat2xt2dt)but+e(x+ia)t2dt=x+iat=u+eu2dux+ia=πx+iabutx+ia=x2+a2{xx2+a2+iax2+a2}=reiθr=x2+a2andtanθ=axθ=arctan(ax)x+ia=reiarctan(ax)x+ia=(x2+a2)14ei2arctan(ax)+e(x+ia)t2dt=π(x2+a2)14ei2arctan(ax)f(x)=π2(x2+a2)14cos(12arctan(ax))f(x)=π2.x(t2+a2)14cos(12arctan(at))dt+c
Commented by abdo.msup.com last updated on 27/Jun/18
error at the final lines  f^′ (x)=((√π)/2)(x^2  +a^2 )^(−(1/4))  cos{(1/2)arctan((a/x))}  −(π/(2(√x))) ⇒  f(x)=((√π)/2) ∫_. ^x (t^2 +a^2 )^(−(1/4)) cos((1/2)arctan((a/t)))dt  −π(√x)   +c
erroratthefinallinesf(x)=π2(x2+a2)14cos{12arctan(ax)}π2xf(x)=π2.x(t2+a2)14cos(12arctan(at))dtπx+c

Leave a Reply

Your email address will not be published. Required fields are marked *