Menu Close

let-f-x-0-1-cos-xt-t-2-e-t-dt-calculate-f-x-




Question Number 34314 by prof Abdo imad last updated on 03/May/18
let f(x)= ∫_0 ^(+∞)   ((1−cos(xt))/t^2 ) e^(−t) dt   calculate f(x) .
letf(x)=0+1cos(xt)t2etdtcalculatef(x).
Commented by prof Abdo imad last updated on 06/May/18
we have f^′ (x) = ∫_0 ^∞    ((t sin(xt))/t^2 ) e^(−t)  dt  = ∫_0 ^∞    ((sin(xt))/t) e^(−t)  dt ⇒ f^(′′) (x)= ∫_0 ^∞  ((t cos(xt))/t) e^(−t) dt  =∫_0 ^∞   e^(−t)  cos(xt)dt =Re( ∫_0 ^∞  e^(−t)  e^(ixt) dt)  =Re( ∫_0 ^∞   e^((−1+ix)t) dt) but  ∫_0 ^∞   e^((−1+ix)t) dt =[ (1/(−1 +ix))e^((−1+ix)t) ]_0 ^(+∞) =((−1)/(−1+ix))  = (1/(1−ix)) = ((1+ix)/(1+x^2 )) ⇒ f^(′′) (x)= (1/(1+x^2 )) ⇒  f^′ (x)= arctanx +λ but λ =f^′ (0)=0 ⇒  f^′ (x)= arctanx ⇒ f(x) = ∫ arctanxdx +c  ∫  arctanxdx = x arctanx −∫  (x/(1+x^2 ))dx   = x arctanx −(1/2)ln(1+x^2 ) ⇒  f(x)=  x arctanx −(1/2)ln(1+x^2 ) +c  c =f(0) =0 ⇒   f(x)= x arctanx −(1/2) ln(1+x^2 ) .
wehavef(x)=0tsin(xt)t2etdt=0sin(xt)tetdtf(x)=0tcos(xt)tetdt=0etcos(xt)dt=Re(0eteixtdt)=Re(0e(1+ix)tdt)but0e(1+ix)tdt=[11+ixe(1+ix)t]0+=11+ix=11ix=1+ix1+x2f(x)=11+x2f(x)=arctanx+λbutλ=f(0)=0f(x)=arctanxf(x)=arctanxdx+carctanxdx=xarctanxx1+x2dx=xarctanx12ln(1+x2)f(x)=xarctanx12ln(1+x2)+cc=f(0)=0f(x)=xarctanx12ln(1+x2).

Leave a Reply

Your email address will not be published. Required fields are marked *