Menu Close

let-f-x-0-1-dt-1-xch-t-with-x-real-1-determine-a-explicit-form-of-f-x-2-find-also-g-x-0-1-dt-1-xch-t-2-3-calculate-0-1-dt-1-3ch-t-and-0-1-dt-1-3ch-t-




Question Number 59528 by Mr X pcx last updated on 11/May/19
let f(x) =∫_0 ^1    (dt/(1+xch(t))) with x real  1) determine a explicit form of f(x)  2)find also g(x)=∫_0 ^1  (dt/((1+xch(t))^2 ))  3) calculate ∫_0 ^1   (dt/(1+3ch(t))) and   ∫_0 ^1     (dt/((1+3ch(t))^2 ))
letf(x)=01dt1+xch(t)withxreal1)determineaexplicitformoff(x)2)findalsog(x)=01dt(1+xch(t))23)calculate01dt1+3ch(t)and01dt(1+3ch(t))2
Commented by MJS last updated on 11/May/19
same path as before  ∫(dt/(1+xcosh t))=2∫(e^t /(xe^(2t) +2e^t +x))dt=(2/( (√(x^2 −1))))arctan ((xe^t +1)/( (√(x^2 −1)))) +C  ∫(dt/((1+xcosh t)^2 ))=4∫(e^(2t) /((xe^(2t) +2e^t +x)^2 ))dt=−(2/((x^2 −1)^(3/2) ))arctan ((xe^t +1)/( (√(x^2 −1)))) −((2(e^t +x))/((xe^(2t) +2e^t +x)(x^2 −1)))
samepathasbeforedt1+xcosht=2etxe2t+2et+xdt=2x21arctanxet+1x21+Cdt(1+xcosht)2=4e2t(xe2t+2et+x)2dt=2(x21)3/2arctanxet+1x212(et+x)(xe2t+2et+x)(x21)
Commented by maxmathsup by imad last updated on 11/May/19
thanks sir
thankssir
Commented by maxmathsup by imad last updated on 12/May/19
1) we have f(x) =∫_0 ^1     (dt/(1+x((e^t  +e^(−t) )/2))) =∫_0 ^1   ((2dt)/(2+xe^t  +x e^(−t) ))  =_(e^t  =u)     ∫_1 ^e      (2/(2 +xu +xu^(−1) )) (du/u) = ∫_1 ^e     ((2du)/(2u+xu^2  +x))  =∫_1 ^e   ((2du)/(xu^2  +2u +x))     poles of F(u)=(2/(xu^2  +2u +x))  xu^2  +2u +x =0 →Δ^′ =1−x^2    case 1    1−x^2 >0 ⇒∣x∣<1 ⇒u_1 =((−1+(√(1−x^2 )))/x)  u_2 =((−1−(√(1−x^2 )))/x)   (we suppose x≠0) ⇒F(u) =(2/(x(u−u_1 )(u−u_2 )))  =(2/(x(u_1 −u_2 )))(  (1/(u−u_1 )) −(1/(u−u_2 ))) =(2/(x ((2(√(1−x^2 )))/x)))((1/(u−u_1 )) −(1/(u−u_2 )))=(1/( (√(1−x^2 ))))((1/(u−u_1 ))−(1/(u−u_2 )))  f(x) =∫_1 ^e  F(u)du = (1/( (√(1−x^2 )))) [ln∣((u−u_1 )/(u−u_2 ))∣]_1 ^e =(1/( (√(1−x^2 )))){ln∣((e−u_1 )/(e−u_2 ))∣−ln∣((1−u_1 )/(1−u_2 ))∣}  =(1/( (√(1−x^2 )))){ ln∣((e−((−1+(√(1−x^2 )))/x))/(e−((−1−(√(1−x^2 )))/x)))∣−ln∣((1−((−1+(√(1−x^2 )))/x))/(1−((−1−(√(1−x^2 )))/x)))∣}  =(1/( (√(1−x^2 )))){ln∣((ex+1−(√(1−x^2 )))/(ex+1+(√(1−x^2 ))))∣−ln∣((x+1−(√(1−x^2 )))/(x+1+(√(1−x^2 ))))∣}
1)wehavef(x)=01dt1+xet+et2=012dt2+xet+xet=et=u1e22+xu+xu1duu=1e2du2u+xu2+x=1e2duxu2+2u+xpolesofF(u)=2xu2+2u+xxu2+2u+x=0Δ=1x2case11x2>0⇒∣x∣<1u1=1+1x2xu2=11x2x(wesupposex0)F(u)=2x(uu1)(uu2)=2x(u1u2)(1uu11uu2)=2x21x2x(1uu11uu2)=11x2(1uu11uu2)f(x)=1eF(u)du=11x2[lnuu1uu2]1e=11x2{lneu1eu2ln1u11u2}=11x2{lne1+1x2xe11x2xln11+1x2x111x2x}=11x2{lnex+11x2ex+1+1x2lnx+11x2x+1+1x2}
Commented by maxmathsup by imad last updated on 12/May/19
case 2  1−x^2 <0  ⇒x^2 −1>0⇒F(u) = (2/(xu^2  +2u +x)) =(2/(x(u^2  +2(u/x)+1)))  =(2/(x{ u^2  +2(u/x) +(1/x^2 ) +1−(1/x^2 )))) =(2/(x{  (u+(1/x))^2  +((x^2 −1)/x^2 )}))  =(2/(x{  (u+(1/x))^2  +(((√(x^2 −1))/(∣x∣)))^2 )) ⇒chang.u+(1/x) =((√(x^2 −1))/(∣x∣)) α  give α =((xu +1)/x) ((∣x∣)/( (√(x^2 −1))))  f(x) =∫_1 ^e  F(u)du = (2/x) ∫_(ξ(x)((x+1)/( (√(x^2 −1))))) ^(ξ(x)((ex+1)/( (√(x^2 −1)))))     (1/(((x^2 −1)/(∣x∣))(1+α^2 ))) ((√(x^2 −1))/(∣x∣)) dα  =(2/(x(√(x^2 −1)))) [arctan(α)]_(((x+1)/( (√(x^2 −1)))) ξ(x)) ^(((ex +1)/( (√(x^2 −1))))ξ(x))   =(2/(x(√(x^2 −1)))){ arctan(((ex+1)/( (√(x^2 −1)))) ξ(x)) −arctan(((x+1)/( (√(x^2 −1)))) ξ(x))} with  ξ(x)=1 if x>0  and ξ(x) =−1 if x<0 .
case21x2<0x21>0F(u)=2xu2+2u+x=2x(u2+2ux+1)=2x{u2+2ux+1x2+11x2)=2x{(u+1x)2+x21x2}=2x{(u+1x)2+(x21x)2chang.u+1x=x21xαgiveα=xu+1xxx21f(x)=1eF(u)du=2xξ(x)x+1x21ξ(x)ex+1x211x21x(1+α2)x21xdα=2xx21[arctan(α)]x+1x21ξ(x)ex+1x21ξ(x)=2xx21{arctan(ex+1x21ξ(x))arctan(x+1x21ξ(x))}withξ(x)=1ifx>0andξ(x)=1ifx<0.
Commented by maxmathsup by imad last updated on 12/May/19
3) ∫_0 ^1    (dt/(1+3 ch(t))) =f(3)    (case 2)  =(2/(3(√8))){ arctan(((3e+1)/( (√8))))−arctan((4/( (√8))))}  =(1/(3(√2))){ arctan(((3e+1)/(2(√2)))) −arctan((√2))} .
3)01dt1+3ch(t)=f(3)(case2)=238{arctan(3e+18)arctan(48)}=132{arctan(3e+122)arctan(2)}.

Leave a Reply

Your email address will not be published. Required fields are marked *