Question Number 59528 by Mr X pcx last updated on 11/May/19

Commented by MJS last updated on 11/May/19

Commented by maxmathsup by imad last updated on 11/May/19

Commented by maxmathsup by imad last updated on 12/May/19
![1) we have f(x) =∫_0 ^1 (dt/(1+x((e^t +e^(−t) )/2))) =∫_0 ^1 ((2dt)/(2+xe^t +x e^(−t) )) =_(e^t =u) ∫_1 ^e (2/(2 +xu +xu^(−1) )) (du/u) = ∫_1 ^e ((2du)/(2u+xu^2 +x)) =∫_1 ^e ((2du)/(xu^2 +2u +x)) poles of F(u)=(2/(xu^2 +2u +x)) xu^2 +2u +x =0 →Δ^′ =1−x^2 case 1 1−x^2 >0 ⇒∣x∣<1 ⇒u_1 =((−1+(√(1−x^2 )))/x) u_2 =((−1−(√(1−x^2 )))/x) (we suppose x≠0) ⇒F(u) =(2/(x(u−u_1 )(u−u_2 ))) =(2/(x(u_1 −u_2 )))( (1/(u−u_1 )) −(1/(u−u_2 ))) =(2/(x ((2(√(1−x^2 )))/x)))((1/(u−u_1 )) −(1/(u−u_2 )))=(1/( (√(1−x^2 ))))((1/(u−u_1 ))−(1/(u−u_2 ))) f(x) =∫_1 ^e F(u)du = (1/( (√(1−x^2 )))) [ln∣((u−u_1 )/(u−u_2 ))∣]_1 ^e =(1/( (√(1−x^2 )))){ln∣((e−u_1 )/(e−u_2 ))∣−ln∣((1−u_1 )/(1−u_2 ))∣} =(1/( (√(1−x^2 )))){ ln∣((e−((−1+(√(1−x^2 )))/x))/(e−((−1−(√(1−x^2 )))/x)))∣−ln∣((1−((−1+(√(1−x^2 )))/x))/(1−((−1−(√(1−x^2 )))/x)))∣} =(1/( (√(1−x^2 )))){ln∣((ex+1−(√(1−x^2 )))/(ex+1+(√(1−x^2 ))))∣−ln∣((x+1−(√(1−x^2 )))/(x+1+(√(1−x^2 ))))∣}](https://www.tinkutara.com/question/Q59598.png)
Commented by maxmathsup by imad last updated on 12/May/19
![case 2 1−x^2 <0 ⇒x^2 −1>0⇒F(u) = (2/(xu^2 +2u +x)) =(2/(x(u^2 +2(u/x)+1))) =(2/(x{ u^2 +2(u/x) +(1/x^2 ) +1−(1/x^2 )))) =(2/(x{ (u+(1/x))^2 +((x^2 −1)/x^2 )})) =(2/(x{ (u+(1/x))^2 +(((√(x^2 −1))/(∣x∣)))^2 )) ⇒chang.u+(1/x) =((√(x^2 −1))/(∣x∣)) α give α =((xu +1)/x) ((∣x∣)/( (√(x^2 −1)))) f(x) =∫_1 ^e F(u)du = (2/x) ∫_(ξ(x)((x+1)/( (√(x^2 −1))))) ^(ξ(x)((ex+1)/( (√(x^2 −1))))) (1/(((x^2 −1)/(∣x∣))(1+α^2 ))) ((√(x^2 −1))/(∣x∣)) dα =(2/(x(√(x^2 −1)))) [arctan(α)]_(((x+1)/( (√(x^2 −1)))) ξ(x)) ^(((ex +1)/( (√(x^2 −1))))ξ(x)) =(2/(x(√(x^2 −1)))){ arctan(((ex+1)/( (√(x^2 −1)))) ξ(x)) −arctan(((x+1)/( (√(x^2 −1)))) ξ(x))} with ξ(x)=1 if x>0 and ξ(x) =−1 if x<0 .](https://www.tinkutara.com/question/Q59601.png)
Commented by maxmathsup by imad last updated on 12/May/19
