Question Number 64429 by mathmax by abdo last updated on 17/Jul/19

Commented by mathmax by abdo last updated on 20/Jul/19
![1) we have f(x) =∫_0 ^1 (dt/(t+x+(√(t^2 +1)))) changement t =sh(u) give f(x) =∫_0 ^(ln(1+(√2))) ((chu du)/(sh(u)+x +ch(u))) =∫_0 ^(ln(1+(√2))) (((e^u +e^(−u) )/2)/(((e^u −e^(−u) )/2)+x+((e^u +e^(−u) )/2)))du =∫_0 ^(ln(1+(√2))) ((e^u +e^(−u) )/(e^u −e^(−u) +2x +e^u +e^(−u) ))du =∫_0 ^(ln(1+(√2))) ((e^u +e^(−u) )/(2x +2e^u ))du =_(e^u =z) (1/2)∫_1 ^(1+(√2)) ((z +z^(−1) )/(x +z)) (dz/z) =(1/2) ∫_1 ^(1+(√2)) ((z+z^(−1) )/(xz +z^2 ))dz =(1/2) ∫_1 ^(1+(√2)) ((z^2 +1)/(z^2 (x+z)))dz let decompose F(z)=((z^2 +1)/(z^2 (x+z))) F(z) =(a/z) +(b/z^2 ) +(c/(x+z)) b =lim_(z→0) z^2 F(z) =(1/x) c =lim_(z→−x) (z+x)F(z) =((x^2 +1)/x^2 ) ⇒ F(z) =(a/z) +(1/(xz^2 )) +((x^2 +1)/(x^2 (z+x))) F(1) =(2/(x+1)) =a +(1/x) +((x^2 +1)/(x^2 (x+1))) ⇒2=(x+1)a+((x+1)/x) +((x^2 +1)/x^2 ) ⇒ 2=(x+1)a +((x^2 +x +x^2 +1)/x^2 ) =(x+1)a +((2x^2 +x+1)/x^2 ) ⇒ 2x^2 =x^2 (x+1)a +2x^2 +x+1 ⇒x^2 (x+1)a =−(x+1) ⇒ a =−(1/x^2 ) (if x≠−1) ⇒F(z) =−(1/(x^2 z)) +(1/(xz^2 )) +((x^2 +1)/(x^2 (z+x))) ⇒ 2f(x) =∫_1 ^(1+(√2)) {−(1/(x^2 z)) +(1/(xz^2 )) +((x^2 +1)/(x^2 (z+x)))}dz =−(1/x^2 ) ∫_1 ^(1+(√2)) (dz/z) +(1/x) ∫_1 ^(1+(√2)) (dz/z^2 ) +((x^2 +1)/x^2 ) ∫_1 ^(1+(√2)) (dz/(z+x)) =−(1/x^2 )[ln∣z∣]_1 ^(1+(√2)) −(1/x)[(1/z)]_1 ^(1+(√2)) +((x^2 +1)/x^2 )[ln∣z+x∣]_1 ^(1+(√2)) =((−ln(1+(√2)))/x^2 ) −(1/x)((1/(1+(√2))) −1) +((x^2 +1)/x^2 ){ln∣x+1+(√2)∣−ln∣x+1∣} ⇒ f(x)=(1/2){−((ln(1+(√2)))/x^2 ) +((√2)/x) +((x^2 +1)/x^2 )ln∣((x+1+(√2))/(x+1))∣ }](https://www.tinkutara.com/question/Q64644.png)
Commented by mathmax by abdo last updated on 20/Jul/19

Commented by mathmax by abdo last updated on 20/Jul/19

Commented by mathmax by abdo last updated on 20/Jul/19
![4) ∫_0 ^1 (dt/(t+(√(t^2 +1)))) =_(t=sh(u)) ∫_0 ^(ln(1+(√2))) ((chu)/(sh(u)+ch(u)))du =∫_0 ^(ln(1+(√2))) ((e^u +e^(−u) )/(e^u −e^(−u) +e^u +e^(−u) )) du =∫_0 ^(ln(1+(√2))) ((e^u +e^(−u) )/(2e^u )) du =(1/2) ∫_0 ^(ln(1+(√2))) du +(1/2) ∫_0 ^(ln(1+(√2))) e^(−2u) du =((ln(1+(√2)))/2) −(1/4)[ e^(−2u) ]_0 ^(ln(1+(√2))) =((ln(1+(√2)))/2)−(1/4){ (1/((1+(√2))^2 )) −1} .](https://www.tinkutara.com/question/Q64647.png)
Commented by mathmax by abdo last updated on 20/Jul/19
