Menu Close

let-f-x-0-1-dt-t-x-t-2-1-x-real-parametre-1-find-a-explicite-form-forf-x-2-detemine-also-g-x-0-1-dt-t-x-t-2-1-2-3-give-f-n-x-at-form-of-integrals-4-




Question Number 64429 by mathmax by abdo last updated on 17/Jul/19
let f(x)=∫_0 ^1     (dt/(t+x+(√(t^2  +1))))   (x real parametre)  1) find a explicite form forf(x)  2)detemine also g(x) =∫_0 ^1    (dt/((t+x+(√(t^2 +1)))^2 ))  3)give f^((n)) (x) at form of integrals  4) find the values of  ∫_0 ^1     (dt/(t+(√(t^2 +1))))  and  ∫_0 ^1    (dt/((t+(√(t^2  +1)))^2 ))  5) find the values of  ∫_0 ^1     (dt/(t+1 +(√(t^2  +1)))) and ∫_0 ^1   (dt/((t+1+(√(t^2 +1)))^2 ))
letf(x)=01dtt+x+t2+1(xrealparametre)1)findaexpliciteformforf(x)2)deteminealsog(x)=01dt(t+x+t2+1)23)givef(n)(x)atformofintegrals4)findthevaluesof01dtt+t2+1and01dt(t+t2+1)25)findthevaluesof01dtt+1+t2+1and01dt(t+1+t2+1)2
Commented by mathmax by abdo last updated on 20/Jul/19
1) we have f(x) =∫_0 ^1   (dt/(t+x+(√(t^2  +1))))  changement t =sh(u) give  f(x) =∫_0 ^(ln(1+(√2)))     ((chu du)/(sh(u)+x +ch(u)))  =∫_0 ^(ln(1+(√2)))    (((e^u  +e^(−u) )/2)/(((e^u −e^(−u) )/2)+x+((e^u  +e^(−u) )/2)))du  =∫_0 ^(ln(1+(√2)))     ((e^u  +e^(−u) )/(e^u −e^(−u)  +2x +e^u  +e^(−u) ))du =∫_0 ^(ln(1+(√2)))   ((e^u  +e^(−u) )/(2x +2e^u ))du  =_(e^u =z)     (1/2)∫_1 ^(1+(√2))     ((z +z^(−1) )/(x +z)) (dz/z) =(1/2) ∫_1 ^(1+(√2))    ((z+z^(−1) )/(xz +z^2 ))dz  =(1/2) ∫_1 ^(1+(√2))   ((z^2  +1)/(z^2 (x+z)))dz  let decompose F(z)=((z^2  +1)/(z^2 (x+z)))  F(z) =(a/z) +(b/z^2 ) +(c/(x+z))  b =lim_(z→0) z^2  F(z) =(1/x)  c =lim_(z→−x)  (z+x)F(z) =((x^2  +1)/x^2 ) ⇒  F(z) =(a/z) +(1/(xz^2 )) +((x^2 +1)/(x^2 (z+x)))  F(1) =(2/(x+1)) =a +(1/x) +((x^2  +1)/(x^2 (x+1))) ⇒2=(x+1)a+((x+1)/x) +((x^2  +1)/x^2 ) ⇒  2=(x+1)a +((x^2  +x +x^2  +1)/x^2 ) =(x+1)a +((2x^2  +x+1)/x^2 ) ⇒  2x^2  =x^2 (x+1)a +2x^2  +x+1 ⇒x^2 (x+1)a =−(x+1) ⇒  a =−(1/x^2 )  (if x≠−1) ⇒F(z) =−(1/(x^2 z)) +(1/(xz^2 )) +((x^2  +1)/(x^2 (z+x))) ⇒  2f(x) =∫_1 ^(1+(√2)) {−(1/(x^2 z)) +(1/(xz^2 )) +((x^2  +1)/(x^2 (z+x)))}dz  =−(1/x^2 ) ∫_1 ^(1+(√2)) (dz/z) +(1/x) ∫_1 ^(1+(√2)) (dz/z^2 ) +((x^2  +1)/x^2 ) ∫_1 ^(1+(√2))  (dz/(z+x))  =−(1/x^2 )[ln∣z∣]_1 ^(1+(√2)) −(1/x)[(1/z)]_1 ^(1+(√2))  +((x^2  +1)/x^2 )[ln∣z+x∣]_1 ^(1+(√2))   =((−ln(1+(√2)))/x^2 ) −(1/x)((1/(1+(√2))) −1) +((x^2  +1)/x^2 ){ln∣x+1+(√2)∣−ln∣x+1∣} ⇒  f(x)=(1/2){−((ln(1+(√2)))/x^2 ) +((√2)/x) +((x^2  +1)/x^2 )ln∣((x+1+(√2))/(x+1))∣ }
1)wehavef(x)=01dtt+x+t2+1changementt=sh(u)givef(x)=0ln(1+2)chudush(u)+x+ch(u)=0ln(1+2)eu+eu2eueu2+x+eu+eu2du=0ln(1+2)eu+eueueu+2x+eu+eudu=0ln(1+2)eu+eu2x+2eudu=eu=z1211+2z+z1x+zdzz=1211+2z+z1xz+z2dz=1211+2z2+1z2(x+z)dzletdecomposeF(z)=z2+1z2(x+z)F(z)=az+bz2+cx+zb=limz0z2F(z)=1xc=limzx(z+x)F(z)=x2+1x2F(z)=az+1xz2+x2+1x2(z+x)F(1)=2x+1=a+1x+x2+1x2(x+1)2=(x+1)a+x+1x+x2+1x22=(x+1)a+x2+x+x2+1x2=(x+1)a+2x2+x+1x22x2=x2(x+1)a+2x2+x+1x2(x+1)a=(x+1)a=1x2(ifx1)F(z)=1x2z+1xz2+x2+1x2(z+x)2f(x)=11+2{1x2z+1xz2+x2+1x2(z+x)}dz=1x211+2dzz+1x11+2dzz2+x2+1x211+2dzz+x=1x2[lnz]11+21x[1z]11+2+x2+1x2[lnz+x]11+2=ln(1+2)x21x(11+21)+x2+1x2{lnx+1+2lnx+1}f(x)=12{ln(1+2)x2+2x+x2+1x2lnx+1+2x+1}
Commented by mathmax by abdo last updated on 20/Jul/19
2) theorem of derivation give   f^′ (x) =∫_0 ^1  (∂/∂x)((1/(t+x+(√(t^2  +1)))))dt =−∫_0 ^1   (dt/((t+x+(√(t^2  +1)))^2 )) =−g(x) ⇒  g(x) =−f^′ (x)   f is known rest to calculate f^′ (x)
2)theoremofderivationgivef(x)=01x(1t+x+t2+1)dt=01dt(t+x+t2+1)2=g(x)g(x)=f(x)fisknownresttocalculatef(x)
Commented by mathmax by abdo last updated on 20/Jul/19
3)we have f^((n)) (x) =∫_0 ^1  (∂^n /∂x^n )((1/(t+x+(√(t^2  +1)))))dt  =∫_0 ^1    (((−1)^n n!)/((t+x+(√(t^2  +1)))^(n+1) ))dt
3)wehavef(n)(x)=01nxn(1t+x+t2+1)dt=01(1)nn!(t+x+t2+1)n+1dt
Commented by mathmax by abdo last updated on 20/Jul/19
4) ∫_0 ^1    (dt/(t+(√(t^2  +1)))) =_(t=sh(u))     ∫_0 ^(ln(1+(√2))) ((chu)/(sh(u)+ch(u)))du  =∫_0 ^(ln(1+(√2)))  ((e^u +e^(−u) )/(e^u −e^(−u)  +e^u  +e^(−u) )) du =∫_0 ^(ln(1+(√2)))  ((e^u  +e^(−u) )/(2e^u )) du  =(1/2) ∫_0 ^(ln(1+(√2))) du +(1/2) ∫_0 ^(ln(1+(√2))) e^(−2u)  du  =((ln(1+(√2)))/2) −(1/4)[ e^(−2u) ]_0 ^(ln(1+(√2)))   =((ln(1+(√2)))/2)−(1/4){ (1/((1+(√2))^2 )) −1} .
4)01dtt+t2+1=t=sh(u)0ln(1+2)chush(u)+ch(u)du=0ln(1+2)eu+eueueu+eu+eudu=0ln(1+2)eu+eu2eudu=120ln(1+2)du+120ln(1+2)e2udu=ln(1+2)214[e2u]0ln(1+2)=ln(1+2)214{1(1+2)21}.
Commented by mathmax by abdo last updated on 20/Jul/19
5) ∫_0 ^1  (dt/(t+1+(√(t^2  +1)))) =f(1) =(1/2){−ln(1+(√2))+(√2) +2ln∣((2+(√2))/2)∣
5)01dtt+1+t2+1=f(1)=12{ln(1+2)+2+2ln2+22

Leave a Reply

Your email address will not be published. Required fields are marked *