Menu Close

let-f-x-0-1-dt-x-2-t-with-x-gt-0-1-determine-a-explicit-form-for-f-x-2-determine-also-g-x-0-1-dt-x-2-x-2-3-give-f-n-x-at-form-of-integral-4-calculate-0-1-dt




Question Number 64160 by mathmax by abdo last updated on 14/Jul/19
let f(x) =∫_0 ^1  (dt/(x +2^t ))  with x>0  1) determine a explicit form for f(x)  2) determine also g(x)=∫_0 ^1  (dt/((x+2^x )^2 ))  3) give f^((n)) (x) at form of integral   4) calculate ∫_0 ^1   (dt/(1+2^t )) and ∫_0 ^1  (dt/((1+2^t )^2 ))
letf(x)=01dtx+2twithx>01)determineaexplicitformforf(x)2)determinealsog(x)=01dt(x+2x)23)givef(n)(x)atformofintegral4)calculate01dt1+2tand01dt(1+2t)2
Commented by mathmax by abdo last updated on 14/Jul/19
1)we have f(x)=∫_0 ^1 (dt/(x+2^t ))     (x>0) changement 2^t =u give   e^(tln2) =u ⇒tln(2)=lnu ⇒t=((ln(u))/(ln(2))) ⇒f(x) =∫_1 ^2    (du/(ln(2)u(x+u)))  =(1/(ln(2))) (1/x)∫_1 ^2 {(1/u)−(1/(x+u))}du =(1/(xln(2)))[ln((u/(x+u)))]_1 ^2   =(1/(xln(2))){ln((2/(x+2)))−ln((1/(x+1)))}=(1/(xln(2))){ln2−ln(x+2)+ln(x+1)}  f(x)=(1/x) +((ln(((x+1)/(x+2))))/(xln(2)))
1)wehavef(x)=01dtx+2t(x>0)changement2t=ugiveetln2=utln(2)=lnut=ln(u)ln(2)f(x)=12duln(2)u(x+u)=1ln(2)1x12{1u1x+u}du=1xln(2)[ln(ux+u)]12=1xln(2){ln(2x+2)ln(1x+1)}=1xln(2){ln2ln(x+2)+ln(x+1)}f(x)=1x+ln(x+1x+2)xln(2)
Commented by mathmax by abdo last updated on 14/Jul/19
2) we have f^′ (x) =−∫_0 ^1   (dt/((x+2^t )^2 )) =−g(x) ⇒g(x)=−f^′ (x)  we have f(x)=(1/x){1 +((ln(x+1)−ln(x+2))/(ln2))} ⇒  f^′ (x) =−(1/x^2 ){1+((ln(x+1)−ln(x+2))/(ln2))}+(1/x){(1/((x+1)ln2))−(1/((x+2)ln(2)))}  ⇒g(x)=(1/x^2 ){1+((ln(x+1)−ln(x+2))/(ln2))}−(1/x){(1/((x+1)ln2))−(1/((x+2)ln2))}
2)wehavef(x)=01dt(x+2t)2=g(x)g(x)=f(x)wehavef(x)=1x{1+ln(x+1)ln(x+2)ln2}f(x)=1x2{1+ln(x+1)ln(x+2)ln2}+1x{1(x+1)ln21(x+2)ln(2)}g(x)=1x2{1+ln(x+1)ln(x+2)ln2}1x{1(x+1)ln21(x+2)ln2}
Commented by mathmax by abdo last updated on 14/Jul/19
3)we have f^((n)) (x) =∫_0 ^1  (∂^n /∂x^n )((1/(x+2^t )))dt  =∫_0 ^1 (((−1)^n n!)/((x+2^t )^(n+1) ))dt =(−1)^n n! ∫_0 ^1   (dt/((x+2^t )^(n+1) ))
3)wehavef(n)(x)=01nxn(1x+2t)dt=01(1)nn!(x+2t)n+1dt=(1)nn!01dt(x+2t)n+1
Commented by mathmax by abdo last updated on 14/Jul/19
4) ∫_0 ^1  (dt/(1+2^t )) =f(1) =1 +((ln((2/3)))/(ln(2))) =1+((ln(2)−ln(3))/(ln2)) =2−((ln(3))/(ln2))
4)01dt1+2t=f(1)=1+ln(23)ln(2)=1+ln(2)ln(3)ln2=2ln(3)ln2
Commented by mathmax by abdo last updated on 14/Jul/19
∫_0 ^1  (dt/((1+2^t )^2 )) =g(1) =1+((ln(2)−ln(3))/(ln2))−((1/(2ln2))−(1/(3ln2)))  =2 −((ln(3))/(ln2)) +((1/3)−(1/2))(1/(ln(2))) =2−((ln3)/(ln2))−(1/(6ln2))
01dt(1+2t)2=g(1)=1+ln(2)ln(3)ln2(12ln213ln2)=2ln(3)ln2+(1312)1ln(2)=2ln3ln216ln2
Answered by Eminem last updated on 14/Jul/19
1)    let u=2^t      dt=(du/(uln(2)))  f(x)=∫_1 ^2 (du/(uln(2)(x+u)))=∫_1 ^2 (du/(xuln(2)))−∫_1 ^2 (du/(xln(2)(x+u)))=(1/x)−(1/(xln(2)))[ln(x+2)−ln(x+1)]
1)letu=2tdt=duuln(2)f(x)=12duuln(2)(x+u)=12duxuln(2)12duxln(2)(x+u)=1x1xln(2)[ln(x+2)ln(x+1)]
Answered by Eminem last updated on 14/Jul/19
2) Same idea its g(x)=∫(dt/((x+2^t )^2 ))?  f^((n))  libneiz formula explicite   withe integral just swithe derivation withe integral  f^n (x)=∫(d/dx^n )(dt/((x+2^t )))=∫(((−1)^n (n)!)/((x+2^t )^(n+1) ))dt  4.put  x=1in f(x) 2 nd x=1 in f^′ (x)
2)Sameideaitsg(x)=dt(x+2t)2?f(n)libneizformulaexplicitewitheintegraljustswithederivationwitheintegralfn(x)=ddxndt(x+2t)=(1)n(n)!(x+2t)n+1dt4.putx=1inf(x)2ndx=1inf(x)

Leave a Reply

Your email address will not be published. Required fields are marked *