Menu Close

let-f-x-0-1-ln-1-ixt-dt-calculate-f-x-x-from-R-




Question Number 42603 by maxmathsup by imad last updated on 28/Aug/18
let f(x) =∫_0 ^1 ln(1+ixt)dt  calculate f^, (x)    (x from R).
letf(x)=01ln(1+ixt)dtcalculatef,(x)(xfromR).
Commented by prof Abdo imad last updated on 29/Aug/18
we have 1+ixt =(√(1+x^2 t^2 ))((1/( (√(1+x^2 t^2 )))) +i((xt)/( (√(1+x^2 t^2 )))))  =r e^(iθ)  ⇒r=(√(1+x^2 t^2 )) and cosθ =(1/( (√(1+x^2 t^2 ))))  sinθ =((xt)/( (√(1+x^2 t^2 )))) ⇒tanθ =xt ⇒θ=arctan(xt)⇒  ln(1+xt) =ln(r)+iθ =(1/2)ln(1+x^2 t^2 )+i arctan(xt)  ⇒f(x)=(1/2)∫_0 ^1  ln(1+x^2 t^2 )dt +i ∫_0 ^1  arctan(xt)dt⇒  f^′ (x)=(1/2) ∫_0 ^1 ((2xt^2 )/(1+x^2 t^2 ))dt  +i ∫_0 ^1   (t/(1+x^2 t^2 ))dt .  = ∫_0 ^1    ((xt^2 )/(1+x^2 t^2 )) dt  +i  ∫_0 ^1   (t/(1+x^2 t^2 ))dt but for x≠0  ∫_0 ^1   ((xt^2 )/(1+x^2 t^2 )) dt =(1/x) ∫_0 ^1  ((x^2 t^2  +1−1)/(1+x^2 t^2 ))dt  =(1/x) −(1/x) ∫_0 ^1    (dt/(1+x^2 t^2 )) =_(xt =u)  (1/x) −(1/x)∫_0 ^x    (1/(1+u^2 ))(du/x)  =(1/x) −(1/x^2 ) arctan(x)  also  ∫_0 ^1     (t/(1+x^2 t^2 )) dt =_(xt =u)   ∫_0 ^x      (u/(x(1+u^2 ))) (du/x)  =(1/x^2 ) ∫_0 ^x   (u/(1+u^2 ))du =(1/(2x^2 ))ln∣1+x^2 ∣ ⇒  f^′ (x)=(1/x) −((arctanx)/x^2 )  +i{(1/(2x^2 ))ln(1+x^2 } .
wehave1+ixt=1+x2t2(11+x2t2+ixt1+x2t2)=reiθr=1+x2t2andcosθ=11+x2t2sinθ=xt1+x2t2tanθ=xtθ=arctan(xt)ln(1+xt)=ln(r)+iθ=12ln(1+x2t2)+iarctan(xt)f(x)=1201ln(1+x2t2)dt+i01arctan(xt)dtf(x)=12012xt21+x2t2dt+i01t1+x2t2dt.=01xt21+x2t2dt+i01t1+x2t2dtbutforx001xt21+x2t2dt=1x01x2t2+111+x2t2dt=1x1x01dt1+x2t2=xt=u1x1x0x11+u2dux=1x1x2arctan(x)also01t1+x2t2dt=xt=u0xux(1+u2)dux=1x20xu1+u2du=12x2ln1+x2f(x)=1xarctanxx2+i{12x2ln(1+x2}.
Commented by prof Abdo imad last updated on 29/Aug/18
another method by complex derovation  f^′ (x) =∫_0 ^1   (∂/∂x)(ln(1+ixt))dt  = ∫_0 ^1    ((it)/(1+ixt))dt =∫_0 ^1   ((it(1−ixt))/(1+x^2 t^2 ))dt  = ∫_0 ^1    ((xt^2 )/(1+x^2 t^2 ))dt +i ∫_0 ^1   ((tdt)/(1+x^2 t^2 )) =....
anothermethodbycomplexderovationf(x)=01x(ln(1+ixt))dt=01it1+ixtdt=01it(1ixt)1+x2t2dt=01xt21+x2t2dt+i01tdt1+x2t2=.

Leave a Reply

Your email address will not be published. Required fields are marked *