let-f-x-0-1-ln-1-ixt-dt-calculate-f-x-x-from-R- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42603 by maxmathsup by imad last updated on 28/Aug/18 letf(x)=∫01ln(1+ixt)dtcalculatef,(x)(xfromR). Commented by prof Abdo imad last updated on 29/Aug/18 wehave1+ixt=1+x2t2(11+x2t2+ixt1+x2t2)=reiθ⇒r=1+x2t2andcosθ=11+x2t2sinθ=xt1+x2t2⇒tanθ=xt⇒θ=arctan(xt)⇒ln(1+xt)=ln(r)+iθ=12ln(1+x2t2)+iarctan(xt)⇒f(x)=12∫01ln(1+x2t2)dt+i∫01arctan(xt)dt⇒f′(x)=12∫012xt21+x2t2dt+i∫01t1+x2t2dt.=∫01xt21+x2t2dt+i∫01t1+x2t2dtbutforx≠0∫01xt21+x2t2dt=1x∫01x2t2+1−11+x2t2dt=1x−1x∫01dt1+x2t2=xt=u1x−1x∫0x11+u2dux=1x−1x2arctan(x)also∫01t1+x2t2dt=xt=u∫0xux(1+u2)dux=1x2∫0xu1+u2du=12x2ln∣1+x2∣⇒f′(x)=1x−arctanxx2+i{12x2ln(1+x2}. Commented by prof Abdo imad last updated on 29/Aug/18 anothermethodbycomplexderovationf′(x)=∫01∂∂x(ln(1+ixt))dt=∫01it1+ixtdt=∫01it(1−ixt)1+x2t2dt=∫01xt21+x2t2dt+i∫01tdt1+x2t2=…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-173668Next Next post: let-f-x-arctan-xt-2-1-2t-2-dt-1-find-a-explicite-form-of-f-x-2-calculate-0-arctan-t-2-1-2t-2-dt-and-0-arctan-2t-2-1-2t-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.