Menu Close

let-f-x-0-1-ln-1-t-xt-2-dt-1-calculate-f-x-then-find-a-simple-form-of-f-x-2-calculate-0-1-ln-1-t-t-2-dt-3-calculate-0-1-ln-1-t-3-dt-




Question Number 41679 by math khazana by abdo last updated on 11/Aug/18
let f(x) = ∫_0 ^1 ln(1+t +xt^2 )dt  1) calculate f^′ (x) then find a simple form of f(x)  2) calculate  ∫_0 ^1 ln(1+t +t^2 )dt  3) calculate ∫_0 ^1   ln(1−t^3 )dt .
letf(x)=01ln(1+t+xt2)dt1)calculatef(x)thenfindasimpleformoff(x)2)calculate01ln(1+t+t2)dt3)calculate01ln(1t3)dt.
Commented by maxmathsup by imad last updated on 11/Aug/18
1) we have f^′ (x) = ∫_0 ^1   (t^2 /(xt^2  +t+1))dt =(1/x) ∫_0 ^1  ((xt^2  +t+1−t−1)/(xt^2  +t+1))dt  =(1/x) −(1/x) ∫_0 ^1    ((t+1)/(xt^2  +t +1))dt let decompose F(t) =((t+1)/(xt^2  +t +1))  Δ =1−4x  case 1  1−4x>0  ⇔   x<(1/4) ⇒t_1 =((−1+(√(1−4x)))/(2x))  and t_2 =((−1−(√(1−4x)))/(2x))  F(t)=((t+1)/(x(t−t_1 )(t−t_2 ))) = (a/(t−t_1 )) +(b/(t−t_2 ))  a=((t_1  +1)/(x ((2(√(1−4x)))/(2x)))) = ((t_1 +1)/( (√(1−4x))))  b = ((t_2  +1)/(x(−((2(√(1−4x)))/(2x))))) =−((t_2 +1)/( (√(1−4x))))  ⇒ ∫_0 ^1 F(t)dt = ∫_0 ^1 {(a/(t−t_1 )) +(b/(t−t_2 ))}dt  =[ aln∣t−t_1 ∣ +b ln∣t−t_2 ∣]_0 ^1  = aln∣1−t_1 ∣+bln∣1−t_2 ∣−aln∣t_1 ∣−bln∣t_2 ∣  =aln∣((1−t_1 )/t_1 )∣ +bln∣((1−t_2 )/t_2 )∣ ⇒  f^′ (x)=(1/x) −(1/x){aln∣((1−t_1 )/t_1 )∣+bln∣((1−t_2 )/t_2 )∣} ⇒  f(x)=(1−λ_0 )ln∣x∣ +c   with   λ_0  =aln∣((1−t_1 )/t_1 )∣+bln∣((1−t_2 )/t_2 )∣(known)  c=f(1) ⇒ f(x)=(1−λ_0 )ln∣x∣ +f(1)
1)wehavef(x)=01t2xt2+t+1dt=1x01xt2+t+1t1xt2+t+1dt=1x1x01t+1xt2+t+1dtletdecomposeF(t)=t+1xt2+t+1Δ=14xcase114x>0x<14t1=1+14x2xandt2=114x2xF(t)=t+1x(tt1)(tt2)=att1+btt2a=t1+1x214x2x=t1+114xb=t2+1x(214x2x)=t2+114x01F(t)dt=01{att1+btt2}dt=[alntt1+blntt2]01=aln1t1+bln1t2alnt1blnt2=aln1t1t1+bln1t2t2f(x)=1x1x{aln1t1t1+bln1t2t2}f(x)=(1λ0)lnx+cwithλ0=aln1t1t1+bln1t2t2(known)c=f(1)f(x)=(1λ0)lnx+f(1)
Commented by maxmathsup by imad last updated on 11/Aug/18
case 2  1−4x<0 ⇒no real roots if x>(1/4)  ∫_0 ^1  F(x)dx = ∫_0 ^1     ((t+1)/(xt^2  +t +1)) dt =(1/(2x)) ∫_0 ^1  ((2xt +1 +2x −1)/(xt^2  +t +1)) dt  =(1/(2x))[ln∣xt^2 +t+1∣]_0 ^1   +(1/(2x)) ∫_0 ^1    ((2x−1)/(xt^2  +t +1))dt  =(1/(2x))ln∣ x+2∣  +((2x−1)/(2x^2 )) ∫_0 ^1      (dt/(t^2  +(t/x) +(1/x))) but  ∫_0 ^1     (dt/(t^2  +(t/x)+(1/x))) = ∫_0 ^1     (dt/(t^2  +2(t/(2x)) + (1/(4x^2 )) +(1/x)−(1/(4x^2 )))) =∫_0 ^1     (dt/((t+(1/(2x)))^2  +((4x−1)/(4x^2 ))))  =_(t+(1/(2x))= ((√(4x−1))/(2x))u)       ∫_(1/( (√(4x−1)))) ^((2x+1)/( (√(4x−1))))        (1/(((4x−1)/(4x^2 ))(1+u^2 )))  ((√(4x−1))/(2x)) du  =((4x^2 )/(4x−1)) .((√(4x−1))/(2x))  {  arctan(((2x+1)/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))}  = ((2x)/( (√(4x−1)))) { arctan(((2x+1)/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))}⇒  f^′ (x) = (1/x) −(2/( (√(4x−1)))){  arctan(((2x+1)/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))} ⇒
case214x<0norealrootsifx>1401F(x)dx=01t+1xt2+t+1dt=12x012xt+1+2x1xt2+t+1dt=12x[lnxt2+t+1]01+12x012x1xt2+t+1dt=12xlnx+2+2x12x201dtt2+tx+1xbut01dtt2+tx+1x=01dtt2+2t2x+14x2+1x14x2=01dt(t+12x)2+4x14x2=t+12x=4x12xu14x12x+14x114x14x2(1+u2)4x12xdu=4x24x1.4x12x{arctan(2x+14x1)arctan(14x1)}=2x4x1{arctan(2x+14x1)arctan(14x1)}f(x)=1x24x1{arctan(2x+14x1)arctan(14x1)}
Commented by maxmathsup by imad last updated on 11/Aug/18
f(x)=ln(x) −∫     ((2{ arctan(((2x+1)/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))})/( (√(4x−1)))) dx +c..be  continued ..
f(x)=ln(x)2{arctan(2x+14x1)arctan(14x1)}4x1dx+c..becontinued..
Commented by maxmathsup by imad last updated on 11/Aug/18
2) by parts  ∫_0 ^1 ln(t^2  +t+1)dt =[tln(t^2  +t+1)]_0 ^1  −∫_0 ^1   t ((2t+1)/(t^2  +t+1))dt  =ln(3) −∫_0 ^1    ((2t^2  +t)/(t^2  +t +1)) dt but  ∫_0 ^1    ((2t^2  +t)/(t^2  +t +1)) dt =  ∫_0 ^1    ((2(t^2  +t+1) +t−2t−2)/(t^2  +t+1)) dt=2  −∫_0 ^1   ((t+2)/(t^2  +t +1))dt  =2−(1/2) ∫_0 ^1    ((2t+1+3)/(t^2  +t +1)) dt =2−(1/2)[ln∣t^2  +t+1∣_0 ^1  −(3/2) ∫_0 ^1   (dt/(t^2  +t+1))  =2−(1/2)ln(3) −(3/2) ∫_0 ^1    (dt/((t+(1/2))^2 +(3/4))) =_(t+(1/2)=((√3)/2)u)    2−((ln(3))/2) −(3/2) (4/3) ∫_(1/( (√3))) ^(√3)   (1/(1+u^2 )) ((√3)/2)du  =2−((ln(3))/2) −(√3)[arctanu]_(1/( (√3))) ^(√3)  =2−((ln(3))/2) −(√3){ (π/3) −(π/6)}  =2−((ln(3))/2) −(π/6)(√3) ⇒  ∫_0 ^1 ln(1+t +t^2 )dt =ln(3) −2 +((ln(3))/2) +((π(√3))/6) =(3/2)ln(3) +((π(√3))/6) −2 .
2)byparts01ln(t2+t+1)dt=[tln(t2+t+1)]0101t2t+1t2+t+1dt=ln(3)012t2+tt2+t+1dtbut012t2+tt2+t+1dt=012(t2+t+1)+t2t2t2+t+1dt=201t+2t2+t+1dt=212012t+1+3t2+t+1dt=212[lnt2+t+1013201dtt2+t+1=212ln(3)3201dt(t+12)2+34=t+12=32u2ln(3)2324313311+u232du=2ln(3)23[arctanu]133=2ln(3)23{π3π6}=2ln(3)2π6301ln(1+t+t2)dt=ln(3)2+ln(3)2+π36=32ln(3)+π362.
Commented by maxmathsup by imad last updated on 11/Aug/18
3) ∫_0 ^1 ln(1−t^3 )dt =∫_0 ^1 ln(1−t) dt +∫_0 ^1 ln(1+t+t^2 )dtbut  ∫_0 ^1  ln(1−t)dt =_(1−t=x)   ∫_0 ^1 ln(x)dx =[xln(x)−x]_0 ^1 =−1 ⇒  ∫_0 ^1 ln(1−x^3 )dx =−1 +(3/2)ln(3)+((π(√3))/6) −2   =−3 +(3/2)ln(3) +((π(√3))/6) .
3)01ln(1t3)dt=01ln(1t)dt+01ln(1+t+t2)dtbut01ln(1t)dt=1t=x01ln(x)dx=[xln(x)x]01=101ln(1x3)dx=1+32ln(3)+π362=3+32ln(3)+π36.
Answered by alex041103 last updated on 11/Aug/18
1+t+xt^2 =x(t−t_1 )(t−t_2 )  t_(1,2) =((−1±(√(1−4x)))/(2x))  ⇒f(x)=∫_0 ^1 ln(x)dt+∫_0 ^1 ln(t−t_1 )dt +∫_0 ^1 ln(t−t_2 )dt  As we know ∫ln(x)dx=x(ln(x)−1)  ⇒f(x)=ln(x)+ln(1−t_1 ) +ln(1−t_2 )−2=  =ln(x(1−t_1 )(1−t_2 ))−2=  =ln(2+x)−2  ⇒f(x)=ln(2+x)−2  ⇒∫_0 ^1 ln(1+t +t^2 )dt=f(x=1)=ln(3)−2  ⇒∫_0 ^1 ln(1−t^3 )dt  1−t^3 =(1−t)(1+t+t^2 )  ⇒∫_0 ^1 ln(1−t^3 )dt=∫_0 ^1 ln(1−t)dt+f(1)=  =[(1−t)(ln(1−t)−1)]_1 ^0 +f(1)=  =[−1−lim_(t→1^− ) ((ln(1−t)−1)/(1/(1−t)))]+f(1)=  =−[1+lim_(t→1^− ) ((−(1/(1−t)))/(1/((1−t)^2 )))]+f(1)=  =−1+ln(3)−2  ⇒∫_0 ^1 ln(1−t^3 )dt=ln(3)−3
1+t+xt2=x(tt1)(tt2)t1,2=1±14x2xf(x)=01ln(x)dt+01ln(tt1)dt+01ln(tt2)dtAsweknowln(x)dx=x(ln(x)1)f(x)=ln(x)+ln(1t1)+ln(1t2)2==ln(x(1t1)(1t2))2==ln(2+x)2f(x)=ln(2+x)201ln(1+t+t2)dt=f(x=1)=ln(3)201ln(1t3)dt1t3=(1t)(1+t+t2)01ln(1t3)dt=01ln(1t)dt+f(1)==[(1t)(ln(1t)1)]10+f(1)==[1limt1ln(1t)111t]+f(1)==[1+limt111t1(1t)2]+f(1)==1+ln(3)201ln(1t3)dt=ln(3)3

Leave a Reply

Your email address will not be published. Required fields are marked *