let-f-x-0-1-ln-1-xe-t-dt-1-find-a-explicit-form-of-f-x-2-calculate-0-1-ln-1-2e-t-dt-3-developp-f-x-at-integr-serie-if-x-lt-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 59275 by Mr X pcx last updated on 07/May/19 letf(x)=∫01ln(1+xe−t)dt1)findaexplicitformoff(x)2)calculate∫01ln(1+2e−t)dt3)developpf(x)atintegrserieif∣x∣<1 Commented by maxmathsup by imad last updated on 17/May/19 1)wehavef′(x)=∫01e−t1+xe−tdt=∫011et+xdt⇒f′(x)=et=u∫1e1u+xduu=1x∫1e(1u−1u+x)du(forx≠0)=1x[ln∣uu+x∣]1e=1x{ln(ee+x)−ln(11+x)}=1x{1−ln(e+x)+ln(1+x)}=1x−ln(x+e)x+ln(1+x)x⇒f(x)=ln∣x∣−∫ln(x+e)xdx+∫ln(1+x)xdx+C….becontinued… Commented by maxmathsup by imad last updated on 17/May/19 lettakeanotheressaybypartsu′=1andv=ln(1+xe−t)f(x)=[tln(1+xe−t)]01−∫01t.−xe−t1+xe−tdt=ln(1+xe−1)+x∫01te−t1+xe−tdtbut∫01te−t1+xe−tdt=∫01tet+xdt=et=u∫1eln(u)u+xduu=1x∫1elnu{1u−1u+x}dx=1x∫1eln(u)udu−1x∫1eln(u)u+xdx∫1eln(u)udu=byparts[ln2(u)]1e−∫1elnuudu⇒2∫1eln(u)udu=1⇒∫1eln(u)udu=12alsobyparts∫1elnuu+xdx=[ln∣u+x∣lnu]1e−∫1eln∣u+x∣udu=ln(e+x)−∫1eln(u+x)uduifwesupposex>0….becontinued… Commented by maxmathsup by imad last updated on 17/May/19 2)letI=∫01ln(1+2e−t)dtchang.2e−t=xgivee−t=x2⇒t=−ln(x2)3)wehaveln′(1+u)=11+u=∑n=0∞(−1)nun⇒ln(1+u)=∑n=0∞(−1)nn+1un+1=∑n=1∞(−1)n−1nun⇒ln(1+xe−t)=∑n=1∞(−1)n−1n(xe−t)n=∑n=1∞(−1)n−1xnne−nt⇒∫01ln(1+xe−t)dt=∑n=1∞(−1)n−1xnn∫01e−ntdt=∑n=1∞(−1)nxnn2{e−n−1}⇒f(x)=∑n=1∞(−1)n(e−n−1)n2xn. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: how-is-solution-lim-x-sinpi-sin-pi-2-sinx-Next Next post: find-the-value-of-n-2-n-n-1-3-n-1-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.