Menu Close

let-f-x-0-1-ln-1-xe-t-dt-1-find-a-explicit-form-of-f-x-2-calculate-0-1-ln-1-2e-t-dt-3-developp-f-x-at-integr-serie-if-x-lt-1-




Question Number 59275 by Mr X pcx last updated on 07/May/19
let f(x)=∫_0 ^1 ln(1+xe^(−t) )dt  1)find a explicit form of f(x)  2)calculate ∫_0 ^1 ln(1+2e^(−t) )dt  3) developp f(x)at integr serie if ∣x∣<1
letf(x)=01ln(1+xet)dt1)findaexplicitformoff(x)2)calculate01ln(1+2et)dt3)developpf(x)atintegrserieifx∣<1
Commented by maxmathsup by imad last updated on 17/May/19
1) we have f^′ (x) =∫_0 ^1   (e^(−t) /(1+xe^(−t) )) dt  = ∫_0 ^1   (1/(e^t  +x)) dt⇒  f^′ (x) =_(e^t =u)     ∫_1 ^e    (1/(u+x)) (du/u) =(1/x)∫_1 ^e  ((1/u) −(1/(u+x)))du      (for x≠0)  =(1/x)[ln∣(u/(u+x))∣]_1 ^e  =(1/x) {ln((e/(e+x)))−ln((1/(1+x)))}  =(1/x){1−ln(e+x) +ln(1+x)} =(1/x) −((ln(x+e))/x) +((ln(1+x))/x) ⇒  f(x) =ln∣x∣−∫  ((ln(x+e))/x) dx +∫  ((ln(1+x))/x) dx +C ....be continued...
1)wehavef(x)=01et1+xetdt=011et+xdtf(x)=et=u1e1u+xduu=1x1e(1u1u+x)du(forx0)=1x[lnuu+x]1e=1x{ln(ee+x)ln(11+x)}=1x{1ln(e+x)+ln(1+x)}=1xln(x+e)x+ln(1+x)xf(x)=lnxln(x+e)xdx+ln(1+x)xdx+C.becontinued
Commented by maxmathsup by imad last updated on 17/May/19
let take another essay   by parts   u^′ =1   and v =ln(1+xe^(−t) )  f(x) =[t ln(1+xe^(−t) )]_0 ^1  −∫_0 ^1  t .((−xe^(−t) )/(1+xe^(−t) )) dt  =ln(1+x e^(−1) ) +x ∫_0 ^1     ((t e^(−t) )/(1+x e^(−t) )) dt  but  ∫_0 ^1    ((t e^(−t) )/(1+x e^(−t) ))dt =∫_0 ^1   (t/(e^t  +x)) dt  =_(e^t =u)     ∫_1 ^e    ((ln(u))/(u +x)) (du/u)  =(1/x)∫_1 ^e   lnu{(1/u) −(1/(u+x))}dx =(1/x) ∫_1 ^e  ((ln(u))/u) du −(1/x) ∫_1 ^e  ((ln(u))/(u+x)) dx  ∫_1 ^e   ((ln(u))/u) du =_(by parts)      [ln^2 (u)]_1 ^e  −∫_1 ^e  ((lnu)/u) du ⇒ 2 ∫_1 ^e  ((ln(u))/u) du =1 ⇒  ∫_1 ^e  ((ln(u))/u) du =(1/2)  also by parts  ∫_1 ^e   ((lnu)/(u+x)) dx =[ln∣u+x∣lnu]_1 ^e  −∫_1 ^e   ((ln∣u+x∣)/u) du =ln(e+x)−∫_1 ^e  ((ln(u+x))/u) du  if we suppose x>0  ....be continued ...
lettakeanotheressaybypartsu=1andv=ln(1+xet)f(x)=[tln(1+xet)]0101t.xet1+xetdt=ln(1+xe1)+x01tet1+xetdtbut01tet1+xetdt=01tet+xdt=et=u1eln(u)u+xduu=1x1elnu{1u1u+x}dx=1x1eln(u)udu1x1eln(u)u+xdx1eln(u)udu=byparts[ln2(u)]1e1elnuudu21eln(u)udu=11eln(u)udu=12alsobyparts1elnuu+xdx=[lnu+xlnu]1e1elnu+xudu=ln(e+x)1eln(u+x)uduifwesupposex>0.becontinued
Commented by maxmathsup by imad last updated on 17/May/19
2) let I =∫_0 ^1 ln(1+2 e^(−t) )dt   chang. 2e^(−t)  =x give e^(−t)  =(x/2) ⇒t =−ln((x/2))  3) we have ln^′ (1+u) =(1/(1+u)) =Σ_(n=0) ^∞  (−1)^n u^n  ⇒ln(1+u) =Σ_(n=0) ^∞ (((−1)^n )/(n+1))u^(n+1)   =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) u^n  ⇒ln(1+xe^(−t) ) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)(xe^(−t) )^n   =Σ_(n=1) ^∞ (−1)^(n−1)  (x^n /n) e^(−nt)  ⇒∫_0 ^1 ln(1+xe^(−t) )dt =Σ_(n=1) ^∞ (−1)^(n−1) (x^n /n) ∫_0 ^1  e^(−nt)  dt  =Σ_(n=1) ^∞   (−1)^n  (x^n /n^2 ){e^(−n) −1} ⇒f(x) =Σ_(n=1) ^∞  (((−1)^n (e^(−n) −1))/n^2 ) x^n  .
2)letI=01ln(1+2et)dtchang.2et=xgiveet=x2t=ln(x2)3)wehaveln(1+u)=11+u=n=0(1)nunln(1+u)=n=0(1)nn+1un+1=n=1(1)n1nunln(1+xet)=n=1(1)n1n(xet)n=n=1(1)n1xnnent01ln(1+xet)dt=n=1(1)n1xnn01entdt=n=1(1)nxnn2{en1}f(x)=n=1(1)n(en1)n2xn.

Leave a Reply

Your email address will not be published. Required fields are marked *