Menu Close

let-f-x-0-1-ln-1-xt-2-1-t-2-dt-1-find-a-simple-form-of-f-x-2-calculate-0-1-ln-1-t-2-1-t-2-dt-3-calculate-0-1-ln-1-2t-2-1-t-2-dt-




Question Number 41762 by math khazana by abdo last updated on 12/Aug/18
let f(x) = ∫_0 ^1   ((ln(1+xt^2 ))/(1+t^2 )) dt  1) find a simple form of f(x)  2) calculate  ∫_0 ^1   ((ln(1+t^2 ))/(1+t^2 ))dt  3) calculate ∫_0 ^1   ((ln(1+2t^2 ))/(1+t^2 )) dt
letf(x)=01ln(1+xt2)1+t2dt1)findasimpleformoff(x)2)calculate01ln(1+t2)1+t2dt3)calculate01ln(1+2t2)1+t2dt
Commented by math khazana by abdo last updated on 13/Aug/18
we have f^′ (x)= ∫_0 ^1    (t^2 /((1+xt^2 )(1+t^2 )))dt  let decompose F(t) =(t^2 /((1+xt^2 )(1+t^2 )))  F(t)= ((at+b)/(t^2  +1)) +((ct +d)/(xt^2  +1))  F(−t)=F(t) ⇒((−at +b)/(t^2  +1)) +((−ct +d)/(xt^2  +1)) =F(t) ⇒  a=c=0⇒F(t)=(b/(t^2  +1)) +(d/(xt^2  +1))  lim_(t→+∞) t^2  F(t)=(1/x) =b  +(d/x) ⇒1=bx +d ⇒  d=1−bx ⇒F(t)=(b/(t^2  +1)) +((1−bx)/(xt^2  +1))  F(0) =0 =b +1−bx =(1−x)b +1 ⇒b=(1/(x−1))  d=1−(x/(x−1)) =((−1)/(x−1)) ⇒  F(t)=  (1/((x−1)(t^2  +1))) −(1/((x−1)(xt^2  +1))) ⇒  f^′ (x) =(1/(x−1)) ∫_0 ^1   (dt/(1+t^2 )) −(1/(x−1)) ∫_0 ^1    (dx/(1+xt^2 ))  =(π/(4(x−1))) −(1/(x−1)) ∫_0 ^1    (dt/(1+xt^2 ))  case1  x>0  changement t(√x)=u give  ∫_0 ^1     (dt/(1+xt^2 )) = ∫_0 ^(√x)     (1/(1+u^2 )) (du/( (√x))) =(1/( (√x))) arctan((√x))⇒  f^′ (x) =(π/(4(x−1))) −((arctan((√x)))/((x−1)(√x))) ⇒  f(x) =(π/4) ∫_0 ^x    (dt/(t−1))  − ∫_0 ^x     ((arctan((√t)))/((t−1)(√t))) +c  c=f(0)=0 ⇒f(x)=(π/4)ln∣x−1∣ −∫_0 ^x   ((arctan((√t)))/((t−1)(√t)))dt  but  ∫_0 ^x    ((arctan((√t)))/((t−1)(√t))) dt =_((√t)=u)   2∫_0 ^(√x)    ((arctan(u))/((u^2 −1)u)) udu  =2 ∫_0 ^(√x)    ((arctan(u))/(u^2 −1)) du ⇒  f(x)=(π/4)ln∣x−1∣ +2  ∫_0 ^(√x)     ((arctanu)/(1−u^2 )) du
wehavef(x)=01t2(1+xt2)(1+t2)dtletdecomposeF(t)=t2(1+xt2)(1+t2)F(t)=at+bt2+1+ct+dxt2+1F(t)=F(t)at+bt2+1+ct+dxt2+1=F(t)a=c=0F(t)=bt2+1+dxt2+1limt+t2F(t)=1x=b+dx1=bx+dd=1bxF(t)=bt2+1+1bxxt2+1F(0)=0=b+1bx=(1x)b+1b=1x1d=1xx1=1x1F(t)=1(x1)(t2+1)1(x1)(xt2+1)f(x)=1x101dt1+t21x101dx1+xt2=π4(x1)1x101dt1+xt2case1x>0changementtx=ugive01dt1+xt2=0x11+u2dux=1xarctan(x)f(x)=π4(x1)arctan(x)(x1)xf(x)=π40xdtt10xarctan(t)(t1)t+cc=f(0)=0f(x)=π4lnx10xarctan(t)(t1)tdtbut0xarctan(t)(t1)tdt=t=u20xarctan(u)(u21)uudu=20xarctan(u)u21duf(x)=π4lnx1+20xarctanu1u2du
Commented by math khazana by abdo last updated on 13/Aug/18
case 2  x<0  ∫_0 ^1     (dx/(1+xt^2 )) = ∫_0 ^1    (dt/(1−((√(−x))t)^2 ))  =_((√(−x))t =u)   ∫_0 ^(√(−x))     (1/(1−u^2 )) (du/( (√(−x))))  =(1/( (√(−x)))) ∫_0 ^(√(−x))   (du/(1−u^2 )) = (1/(2(√(−x)))) ∫_0 ^(√(−x))   ((1/(1−u)) +(1/(1+u)))du  =(1/(2(√(−x))))[ln∣((1+u)/(1−u))∣]_0 ^(√(−x))  = (1/(2(√(−x))))ln∣((1+(√(−x)))/(1−(√(−x))))∣ ⇒  f^′ (x) = (π/(4(x−1))) −(1/(2(x−1)(√(−x))))ln∣((1+(√(−x)))/(1−(√(−x))))∣ ⇒  f(x)=(π/4)ln∣x−1∣ −∫  (1/(2(x−1)(√(−x))))ln∣((1+(√(−x)))/(1−(√(−x))))∣dx +c
case2x<001dx1+xt2=01dt1(xt)2=xt=u0x11u2dux=1x0xdu1u2=12x0x(11u+11+u)du=12x[ln1+u1u]0x=12xln1+x1xf(x)=π4(x1)12(x1)xln1+x1xf(x)=π4lnx112(x1)xln1+x1xdx+c
Commented by math khazana by abdo last updated on 13/Aug/18
2) let A = ∫_0 ^1   ((ln(1+t^2 ))/(1+t^2 ))dt    A=_(t=tanθ)    ∫_0 ^(π/4)    ((ln(1+tan^2 θ))/(1+tan^2 θ)) (1+tan^2 θ)dθ  = ∫_0 ^(π/4) ln((1/(cos^2 θ)))dθ =−2 ∫_0 ^(π/4) ln(cosθ)dθ    let H = ∫_0 ^(π/4) ln(cosθ)dθ  and K = ∫_0 ^(π/4) ln(sinθ)dθ  we have  H =_(θ=(π/2)−t)  −∫_(π/2) ^(π/4)   ln(sint)dt  = ∫_(π/4) ^(π/2)  ln(sint)dt = −∫_0 ^(π/4) ln(sint)dt +∫_0 ^(π/2) ln(sint)dt  =−K −(π/2)ln(2) ⇒ H +K =−(π/2)ln(2)   K−H = ∫_0 ^(π/4)  ln(sinθ)dθ −∫_0 ^(π/4) ln(cosθ)dθ  =∫_0 ^(π/4) ln(tanθ)dθ =_(tanθ =u)    ∫_0 ^1    ((ln(u))/(1+u^2 )) du  =∫_0 ^1 (Σ_(n=0) ^∞ (−1)^n u^(2n) )ln(u) du  =Σ_(n=0) ^∞   (−1)^n   ∫_0 ^1  u^(2n) ln(u)du  by parts  A_n = ∫_0 ^1 u^(2n) ln(u)du = [(1/(2n+1))u^(2n+1) ln(u)]_0 ^1   −∫_0 ^1    (1/((2n+1))) u^(2n) du =−(1/((2n+1)^2 )) ⇒  K−H = Σ_(n=0) ^∞    (((−1)^(n+1) )/((2n+1)^2 ))  = λ_0  ⇒  2K =−(π/2)ln(2) +λ_0  ⇒K =−(π/4)ln(2) +(λ_0 /2)  H =−(π/2)ln(2) −K =−(π/4)ln(2)−(λ_0 /2)
2)letA=01ln(1+t2)1+t2dtA=t=tanθ0π4ln(1+tan2θ)1+tan2θ(1+tan2θ)dθ=0π4ln(1cos2θ)dθ=20π4ln(cosθ)dθletH=0π4ln(cosθ)dθandK=0π4ln(sinθ)dθwehaveH=θ=π2tπ2π4ln(sint)dt=π4π2ln(sint)dt=0π4ln(sint)dt+0π2ln(sint)dt=Kπ2ln(2)H+K=π2ln(2)KH=0π4ln(sinθ)dθ0π4ln(cosθ)dθ=0π4ln(tanθ)dθ=tanθ=u01ln(u)1+u2du=01(n=0(1)nu2n)ln(u)du=n=0(1)n01u2nln(u)dubypartsAn=01u2nln(u)du=[12n+1u2n+1ln(u)]01011(2n+1)u2ndu=1(2n+1)2KH=n=0(1)n+1(2n+1)2=λ02K=π2ln(2)+λ0K=π4ln(2)+λ02H=π2ln(2)K=π4ln(2)λ02

Leave a Reply

Your email address will not be published. Required fields are marked *