Question Number 48497 by maxmathsup by imad last updated on 24/Nov/18

Commented by maxmathsup by imad last updated on 26/Nov/18

Commented by maxmathsup by imad last updated on 26/Nov/18

Commented by maxmathsup by imad last updated on 26/Nov/18
![2) we have f(x)=∫_0 ^1 ln(1+xt^2 )(Σ_(n=0) ^∞ (−1)^n t^(2n) )dt =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 t^(2n) ln(1+xt^2 )dt =Σ_(n=0) ^∞ (−1)^n A_n by parts A_n =∫_0 ^1 t^(2n) ln(1+xt^2 )dt =[(1/(2n+1))t^(2n+1) ln(1+xt^2 )]_(t=0) ^1 −∫_0 ^1 (1/(2n+1))t^(2n+1) ((2xt)/(1+xt^2 ))dt =((ln(1+x))/(2n+1)) −((2x)/(2n+1)) ∫_0 ^1 (t^(2n+2) /(1+xt^2 )) dt but ∫_0 ^1 (t^(2n+2) /(1+xt^2 )) dt =_((√x)t=u) ∫_0 ^(√x) (u^(2n+2) /(x^(n+1) (1+u^2 ))) (du/( (√x))) =(1/(x^(n+1) (√x))) ∫_0 ^(√x) (u^(2n+2) /(u^2 +1)) du and changement u=tanθ give ∫_0 ^(√x) (u^(2n+2) /(u^2 +1)) du =∫_0 ^(arctan((√x))) ((tan^(2n+2) θ)/(1+tan^2 θ)) (1+tan^2 θ) =∫_0 ^(arctan((√x))) tan^(2n+2) θ dθ be continued...](https://www.tinkutara.com/question/Q48636.png)
Commented by maxmathsup by imad last updated on 26/Nov/18

Commented by maxmathsup by imad last updated on 26/Nov/18
