Menu Close

let-f-x-0-1-ln-1-xt-2-1-t-2-dt-1-find-a-xplicit-form-of-f-x-2-developp-f-at-integr-serie-3-find-the-value-of-0-1-ln-1-t-2-1-t-2-dt-4-find-the-value-of-0-1-ln-1-2t-2




Question Number 48497 by maxmathsup by imad last updated on 24/Nov/18
let f(x)=∫_0 ^1   ((ln(1+xt^2 ))/(1+t^2 ))dt  1) find a xplicit form of f(x)  2) developp f at integr serie   3)find the value of ∫_0 ^1  ((ln(1+t^2 ))/(1+t^2 ))dt  4)find the value of ∫_0 ^1  ((ln(1+2t^2 ))/(1+t^2 ))dt
letf(x)=01ln(1+xt2)1+t2dt1)findaxplicitformoff(x)2)developpfatintegrserie3)findthevalueof01ln(1+t2)1+t2dt4)findthevalueof01ln(1+2t2)1+t2dt
Commented by maxmathsup by imad last updated on 26/Nov/18
1) we have f^′ (x)=∫_0 ^1  (t^2 /((1+xt^2 )(1+t^2 )))dt  let decompose F(t)=(t^2 /((1+xt^2 )(1+t^2 )))  case 1   if x>0 ⇒F(x)=((at +b)/((1+xt^2 ))) +((ct +d)/(1+t^2 ))  F(−x) =F(x)⇒((−at  +b)/(1+xt^2 ))  +((−ct +d)/(1+t^2 )) =((at +b)/(1+xt^2 )) +((ct +d)/(1+t^2 )) ⇒  a=0 and c =0 ⇒F(x)=(b/(1+xt^2 )) +(d/(1+t^2 ))  lim_(t→+∞)  t^2  F(t)=(1/x) =(b/x) +d ⇒1 =b +xd   F(0)=0 =b+d ⇒d =−b ⇒1=b−xb =(1−x)b ⇒b=(1/(1−x)) and d=−(1/(1−x))  F(t) = (1/((1−x))){(1/(1+xt^2 )) −(1/(1+t^2 ))} ⇒f(x)=(1/(1−x))∫_0 ^1   (dt/(1+xt^2 )) −(1/(1−x)) ∫_0 ^1   (dt/(1+t^2 ))  but ∫_0 ^1    (dt/(1+xt^2 )) =_((√x)t =u)      ∫_0 ^(√x)      (du/( (√x)(1+u^2 ))) =(1/( (√x))) arctan((√x)) ⇒  f^′ (x) =((arctan((√x)))/((1−x)(√x)))  −(π/(4(1−x))) ⇒f(x)=∫_0 ^x   ((arctan((√t)))/((1−t)(√t)))dt+(π/4)ln∣1−x∣  changement (√t)=u give ∫_0 ^x  ((arctan((√t)))/( (√t)(1−t))) dt =∫_0 ^(√x)   ((arctan(u))/(u(1−u^2 )))(2u)du  =2 ∫_0 ^(√x)    ((arctan(u))/(1−u^2 )) du ⇒f(x)=2 ∫_0 ^(√x)   ((arctan(u))/(1−u^2 ))du +(π/4)ln∣1−x∣   (x≠1)
1)wehavef(x)=01t2(1+xt2)(1+t2)dtletdecomposeF(t)=t2(1+xt2)(1+t2)case1ifx>0F(x)=at+b(1+xt2)+ct+d1+t2F(x)=F(x)at+b1+xt2+ct+d1+t2=at+b1+xt2+ct+d1+t2a=0andc=0F(x)=b1+xt2+d1+t2limt+t2F(t)=1x=bx+d1=b+xdF(0)=0=b+dd=b1=bxb=(1x)bb=11xandd=11xF(t)=1(1x){11+xt211+t2}f(x)=11x01dt1+xt211x01dt1+t2but01dt1+xt2=xt=u0xdux(1+u2)=1xarctan(x)f(x)=arctan(x)(1x)xπ4(1x)f(x)=0xarctan(t)(1t)tdt+π4ln1xchangementt=ugive0xarctan(t)t(1t)dt=0xarctan(u)u(1u2)(2u)du=20xarctan(u)1u2duf(x)=20xarctan(u)1u2du+π4ln1x(x1)
Commented by maxmathsup by imad last updated on 26/Nov/18
case 2 x<0 ⇒F(x)=(t^2 /(1−((√(−x))t)^2 (1+t^2 ))) =−(t^2 /(((√(−x))t−1)((√(−x))t +1)(t^2  +1)))  =(a/(((√(−x))t−1))) +(b/( (√(−x))t +1)) +((ct +d)/(t^2  +1))   ⇒f(x)=(a/( (√(−x))))ln∣(√(−x))t+1∣+(b/( (√(−x))))ln∣(√(−x))t+1)  +(c/2)ln(t^2  +1) +d arctant  +c....
case2x<0F(x)=t21(xt)2(1+t2)=t2(xt1)(xt+1)(t2+1)=a(xt1)+bxt+1+ct+dt2+1f(x)=axlnxt+1+bxlnxt+1)+c2ln(t2+1)+darctant+c.
Commented by maxmathsup by imad last updated on 26/Nov/18
2) we have f(x)=∫_0 ^1  ln(1+xt^2 )(Σ_(n=0) ^∞ (−1)^n t^(2n) )dt  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1 t^(2n) ln(1+xt^2 )dt =Σ_(n=0) ^∞ (−1)^n  A_n    by parts  A_n =∫_0 ^1  t^(2n) ln(1+xt^2 )dt =[(1/(2n+1))t^(2n+1) ln(1+xt^2 )]_(t=0) ^1  −∫_0 ^1  (1/(2n+1))t^(2n+1)  ((2xt)/(1+xt^2 ))dt  =((ln(1+x))/(2n+1)) −((2x)/(2n+1)) ∫_0 ^1   (t^(2n+2) /(1+xt^2 )) dt but   ∫_0 ^1   (t^(2n+2) /(1+xt^2 )) dt =_((√x)t=u)    ∫_0 ^(√x)      (u^(2n+2) /(x^(n+1) (1+u^2 ))) (du/( (√x)))  =(1/(x^(n+1) (√x))) ∫_0 ^(√x)    (u^(2n+2) /(u^2  +1)) du  and changement u=tanθ give  ∫_0 ^(√x)   (u^(2n+2) /(u^2  +1)) du =∫_0 ^(arctan((√x)))   ((tan^(2n+2) θ)/(1+tan^2 θ)) (1+tan^2 θ) =∫_0 ^(arctan((√x)))  tan^(2n+2) θ dθ  be continued...
2)wehavef(x)=01ln(1+xt2)(n=0(1)nt2n)dt=n=0(1)n01t2nln(1+xt2)dt=n=0(1)nAnbypartsAn=01t2nln(1+xt2)dt=[12n+1t2n+1ln(1+xt2)]t=010112n+1t2n+12xt1+xt2dt=ln(1+x)2n+12x2n+101t2n+21+xt2dtbut01t2n+21+xt2dt=xt=u0xu2n+2xn+1(1+u2)dux=1xn+1x0xu2n+2u2+1duandchangementu=tanθgive0xu2n+2u2+1du=0arctan(x)tan2n+2θ1+tan2θ(1+tan2θ)=0arctan(x)tan2n+2θdθbecontinued
Commented by maxmathsup by imad last updated on 26/Nov/18
3) let I =∫_0 ^1  ((ln(1+t^2 ))/(1+t^2 ))dt  changement t=tanθ give  I =∫_0 ^(π/2)   ((ln(1+tan^2 θ))/(1+tan^2 θ)) (1+tan^2 θ)dθ =∫_0 ^(π/2) ln((1/(cos^2 θ)))dθ  =−2 ∫_0 ^(π/2) ln(cosθ)dπ =−2(−(π/2)ln(2)) =π ln(2).
3)letI=01ln(1+t2)1+t2dtchangementt=tanθgiveI=0π2ln(1+tan2θ)1+tan2θ(1+tan2θ)dθ=0π2ln(1cos2θ)dθ=20π2ln(cosθ)dπ=2(π2ln(2))=πln(2).
Commented by maxmathsup by imad last updated on 26/Nov/18
4) ∫_0 ^1   ((ln(1+2t^2 ))/(1+t^2 )) dt =f(2) =2 ∫_0 ^(√2)   ((arctan(u))/(1−u^2 )) du...be continued...
4)01ln(1+2t2)1+t2dt=f(2)=202arctan(u)1u2dubecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *