Menu Close

let-f-x-0-1-ln-1-xt-2-dt-with-x-lt-1-1-find-f-x-2-calculate-0-1-ln-2-t-2-dt-




Question Number 37343 by math khazana by abdo last updated on 12/Jun/18
let f(x) = ∫_0 ^1 ln(1+xt^2 )dt  with ∣x∣<1  1) find f(x)  2) calculate ∫_0 ^1 ln(2+t^2 )dt .
letf(x)=01ln(1+xt2)dtwithx∣<11)findf(x)2)calculate01ln(2+t2)dt.
Commented by math khazana by abdo last updated on 15/Jun/18
if −1<x<0  we get   f(x) = (1/x) −(1/x) ∫_0 ^1    (dt/(1−(−x)t^2 ))  and chanvement  t(√(−x))=u give  f^′ (x) = (1/x) −(1/x) ∫_0 ^(√(−x))      (1/(1−u^2 )) (du/( (√(−x))))  =(1/x) −(1/(x(√(−x)))) ∫_0 ^(√(−x))   (du/(1−u^2 ))  =(1/x) −(1/(2x(√(−x)))) ∫_0 ^(√(−x))   { (1/(1−u )) +(1/(1+u))}du  =(1/x) −(1/(2x(√(−x)))) [ln∣((1+u)/(1−u))∣]_0 ^(√(−x))   = (1/x) −(1/(2x(√(−x)))) ln∣ ((1+(√(−x)))/(1−(√(−x)))) ∣ ⇒  f(x) = ∫_(−1) ^x   (dt/t)  −∫_(−1) ^x  (1/(2t(√(−t))))ln∣ ((1+(√(−t)))/(1−(√(−t))))∣ dt +c  c =f(−1) = ∫_0 ^1 ln(1−t^2 )dt ⇒  f(x)=ln(−x) −∫_(−1) ^x   (1/(2t(√(−t))))ln∣ ((1+(√(−t)))/(1−(√(−t))))∣ dt  + ∫_0 ^1 ln(1−t^2 )dt . with−1<x<0 ....
if1<x<0wegetf(x)=1x1x01dt1(x)t2andchanvementtx=ugivef(x)=1x1x0x11u2dux=1x1xx0xdu1u2=1x12xx0x{11u+11+u}du=1x12xx[ln1+u1u]0x=1x12xxln1+x1xf(x)=1xdtt1x12ttln1+t1tdt+cc=f(1)=01ln(1t2)dtf(x)=ln(x)1x12ttln1+t1tdt+01ln(1t2)dt.with1<x<0.
Commented by math khazana by abdo last updated on 15/Jun/18
1) we have f^′ (x)^  = ∫_0 ^1   (t^2 /(1+xt^2 ))dt so if x≠0  f^′ (x)=(1/x) ∫_0 ^1  ((xt^2  +1−1)/(1+xt^2 ))dt =(1/x) −(1/x) ∫_0 ^1    (dt/(1+xt^2 )) for0<x<1  changement t(√x)=u give  ∫_0 ^1    (dt/(1+xt^2 )) = ∫_0 ^(√x)     (du/(1+u^2 )) (du/( (√x))) =(1/( (√x))) arctan((√x))⇒  f^′ (x) = (1/x) −((arctan((√x)))/(x(√x)))  ⇒  f(x) = ∫_1 ^x  (dt/t)  −∫_1 ^x    ((arctan((√t)))/(t(√t))) dt+c  c=f(1) =∫_0 ^1 ln(1+t^2 )dt    chang.(√t)=u give  ∫_1 ^(x  )   ((arctan((√t)))/(t(√t))) dt = ∫_1 ^(√x)    ((arctan(u))/(u^2 .u)) 2u du  =2 ∫_1 ^(√x)   ((arctan(u))/u^2 ) du  =2{  [−(1/u) arctan(u)]_1 ^(√x)   −∫_1 ^(√x) −(1/u) (1/(1+u^2 ))du}  =2{  (π/4) −((arctan((√x)))/( (√x))) } +2 ∫_1 ^(√x)    (du/(u(1+u^2 )))  =(π/2)  −((2arctan((√x)))/( (√x))) +2 ∫_1 ^(√x)  ((1/u) −(u/(1+u^2 )))du  =(π/2) −((2 arctan((√x)))/( (√x))) +2[ln((u/( (√(1+u^2 )))))]_1 ^(√x)   =(π/2) −2((arctan((√x)))/( (√x))) +2 ln(((√x)/( (√(1+x))))) ⇒  f(x)=ln(x) −(π/2)  +((2 arctan((√x)))/( (√x))) −2ln(((√x)/( (√(1+x)))))  +∫_0 ^1  ln(1+t^2 )dt  f(x)=ln(x) −(π/2) +((2arctan((√x)))/( (√x))) −lnx +ln(1+x)  +∫_0 ^1   ln(1+t^2 )dt   . and by parts  ∫_0 ^1  ln(1+t^2 )dt = [t ln(1+t^2 )]_0 ^1  −∫_0 ^1   t ((2t)/(1+t^2 )) dt  =ln(2) −2  ∫_0 ^1  ((t^2  +1−1)/(1+t^2 )) dt  =ln(2) −2  +2 ∫_0 ^1   (dt/(1+t^2 )) =ln(2)−2  +(π/2) ⇒  f(x)= ((2 artan((√x)))/( (√x))) +ln(1+x) +ln(2)−2  with 0<x<1
1)wehavef(x)=01t21+xt2dtsoifx0f(x)=1x01xt2+111+xt2dt=1x1x01dt1+xt2for0<x<1changementtx=ugive01dt1+xt2=0xdu1+u2dux=1xarctan(x)f(x)=1xarctan(x)xxf(x)=1xdtt1xarctan(t)ttdt+cc=f(1)=01ln(1+t2)dtchang.t=ugive1xarctan(t)ttdt=1xarctan(u)u2.u2udu=21xarctan(u)u2du=2{[1uarctan(u)]1x1x1u11+u2du}=2{π4arctan(x)x}+21xduu(1+u2)=π22arctan(x)x+21x(1uu1+u2)du=π22arctan(x)x+2[ln(u1+u2)]1x=π22arctan(x)x+2ln(x1+x)f(x)=ln(x)π2+2arctan(x)x2ln(x1+x)+01ln(1+t2)dtf(x)=ln(x)π2+2arctan(x)xlnx+ln(1+x)+01ln(1+t2)dt.andbyparts01ln(1+t2)dt=[tln(1+t2)]0101t2t1+t2dt=ln(2)201t2+111+t2dt=ln(2)2+201dt1+t2=ln(2)2+π2f(x)=2artan(x)x+ln(1+x)+ln(2)2with0<x<1
Commented by math khazana by abdo last updated on 15/Jun/18
2) ∫_0 ^1 ln(2+t^2 )dt = ∫_0 ^1 ln(2)dt +∫_0 ^1 ln(1+(1/2)t^2 )dt  =ln(2) +f((1/2))  =ln(2) +((2 arctan((1/( (√2)))))/(1/( (√2)))) +ln((3/2)) +ln(2) −2  =ln(2) +ln(3) +2(√2)( (π/2) −arctan((√2))) −2  =π(√2) −2(√2) arctan((√2)) +ln(6) −2 .
2)01ln(2+t2)dt=01ln(2)dt+01ln(1+12t2)dt=ln(2)+f(12)=ln(2)+2arctan(12)12+ln(32)+ln(2)2=ln(2)+ln(3)+22(π2arctan(2))2=π222arctan(2)+ln(6)2.

Leave a Reply

Your email address will not be published. Required fields are marked *