Question Number 37343 by math khazana by abdo last updated on 12/Jun/18
$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{2}} \right){dt}\:. \\ $$
Commented by math khazana by abdo last updated on 15/Jun/18
$${if}\:−\mathrm{1}<{x}<\mathrm{0}\:\:{we}\:{get}\: \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{1}−\left(−{x}\right){t}^{\mathrm{2}} }\:\:{and}\:{chanvement} \\ $$$${t}\sqrt{−{x}}={u}\:{give} \\ $$$${f}^{'} \left({x}\right)\:=\:\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\sqrt{−{x}}} \:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}−{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{−{x}}} \\ $$$$=\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{{x}\sqrt{−{x}}}\:\int_{\mathrm{0}} ^{\sqrt{−{x}}} \:\:\frac{{du}}{\mathrm{1}−{u}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}\sqrt{−{x}}}\:\int_{\mathrm{0}} ^{\sqrt{−{x}}} \:\:\left\{\:\frac{\mathrm{1}}{\mathrm{1}−{u}\:}\:+\frac{\mathrm{1}}{\mathrm{1}+{u}}\right\}{du} \\ $$$$=\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}\sqrt{−{x}}}\:\left[{ln}\mid\frac{\mathrm{1}+{u}}{\mathrm{1}−{u}}\mid\right]_{\mathrm{0}} ^{\sqrt{−{x}}} \\ $$$$=\:\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}\sqrt{−{x}}}\:{ln}\mid\:\frac{\mathrm{1}+\sqrt{−{x}}}{\mathrm{1}−\sqrt{−{x}}}\:\mid\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\int_{−\mathrm{1}} ^{{x}} \:\:\frac{{dt}}{{t}}\:\:−\int_{−\mathrm{1}} ^{{x}} \:\frac{\mathrm{1}}{\mathrm{2}{t}\sqrt{−{t}}}{ln}\mid\:\frac{\mathrm{1}+\sqrt{−{t}}}{\mathrm{1}−\sqrt{−{t}}}\mid\:{dt}\:+{c} \\ $$$${c}\:={f}\left(−\mathrm{1}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{t}^{\mathrm{2}} \right){dt}\:\Rightarrow \\ $$$${f}\left({x}\right)={ln}\left(−{x}\right)\:−\int_{−\mathrm{1}} ^{{x}} \:\:\frac{\mathrm{1}}{\mathrm{2}{t}\sqrt{−{t}}}{ln}\mid\:\frac{\mathrm{1}+\sqrt{−{t}}}{\mathrm{1}−\sqrt{−{t}}}\mid\:{dt} \\ $$$$+\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{t}^{\mathrm{2}} \right){dt}\:.\:{with}−\mathrm{1}<{x}<\mathrm{0}\:…. \\ $$$$ \\ $$
Commented by math khazana by abdo last updated on 15/Jun/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}^{'} \left({x}\right)^{} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{xt}^{\mathrm{2}} }{dt}\:{so}\:{if}\:{x}\neq\mathrm{0} \\ $$$${f}^{'} \left({x}\right)=\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{xt}^{\mathrm{2}} \:+\mathrm{1}−\mathrm{1}}{\mathrm{1}+{xt}^{\mathrm{2}} }{dt}\:=\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{1}+{xt}^{\mathrm{2}} }\:{for}\mathrm{0}<{x}<\mathrm{1} \\ $$$${changement}\:{t}\sqrt{{x}}={u}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{1}+{xt}^{\mathrm{2}} }\:=\:\int_{\mathrm{0}} ^{\sqrt{{x}}} \:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{{x}}}\:=\frac{\mathrm{1}}{\:\sqrt{{x}}}\:{arctan}\left(\sqrt{{x}}\right)\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\:\frac{\mathrm{1}}{{x}}\:−\frac{{arctan}\left(\sqrt{{x}}\right)}{{x}\sqrt{{x}}}\:\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\int_{\mathrm{1}} ^{{x}} \:\frac{{dt}}{{t}}\:\:−\int_{\mathrm{1}} ^{{x}} \:\:\:\frac{{arctan}\left(\sqrt{{t}}\right)}{{t}\sqrt{{t}}}\:{dt}+{c} \\ $$$${c}={f}\left(\mathrm{1}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}\:\:\:\:{chang}.\sqrt{{t}}={u}\:{give} \\ $$$$\int_{\mathrm{1}} ^{{x}\:\:} \:\:\frac{{arctan}\left(\sqrt{{t}}\right)}{{t}\sqrt{{t}}}\:{dt}\:=\:\int_{\mathrm{1}} ^{\sqrt{{x}}} \:\:\:\frac{{arctan}\left({u}\right)}{{u}^{\mathrm{2}} .{u}}\:\mathrm{2}{u}\:{du} \\ $$$$=\mathrm{2}\:\int_{\mathrm{1}} ^{\sqrt{{x}}} \:\:\frac{{arctan}\left({u}\right)}{{u}^{\mathrm{2}} }\:{du} \\ $$$$=\mathrm{2}\left\{\:\:\left[−\frac{\mathrm{1}}{{u}}\:{arctan}\left({u}\right)\right]_{\mathrm{1}} ^{\sqrt{{x}}} \:\:−\int_{\mathrm{1}} ^{\sqrt{{x}}} −\frac{\mathrm{1}}{{u}}\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }{du}\right\} \\ $$$$=\mathrm{2}\left\{\:\:\frac{\pi}{\mathrm{4}}\:−\frac{{arctan}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}\:\right\}\:+\mathrm{2}\:\int_{\mathrm{1}} ^{\sqrt{{x}}} \:\:\:\frac{{du}}{{u}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)} \\ $$$$=\frac{\pi}{\mathrm{2}}\:\:−\frac{\mathrm{2}{arctan}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}\:+\mathrm{2}\:\int_{\mathrm{1}} ^{\sqrt{{x}}} \:\left(\frac{\mathrm{1}}{{u}}\:−\frac{{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\right){du} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{2}\:{arctan}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}\:+\mathrm{2}\left[{ln}\left(\frac{{u}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\right)\right]_{\mathrm{1}} ^{\sqrt{{x}}} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\mathrm{2}\frac{{arctan}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}\:+\mathrm{2}\:{ln}\left(\frac{\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\right)\:\Rightarrow \\ $$$${f}\left({x}\right)={ln}\left({x}\right)\:−\frac{\pi}{\mathrm{2}}\:\:+\frac{\mathrm{2}\:{arctan}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}\:−\mathrm{2}{ln}\left(\frac{\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\right) \\ $$$$+\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt} \\ $$$${f}\left({x}\right)={ln}\left({x}\right)\:−\frac{\pi}{\mathrm{2}}\:+\frac{\mathrm{2}{arctan}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}\:−{lnx}\:+{ln}\left(\mathrm{1}+{x}\right) \\ $$$$+\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}\:\:\:.\:{and}\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}\:=\:\left[{t}\:{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}\:\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$={ln}\left(\mathrm{2}\right)\:−\mathrm{2}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{\mathrm{2}} \:+\mathrm{1}−\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$={ln}\left(\mathrm{2}\right)\:−\mathrm{2}\:\:+\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:={ln}\left(\mathrm{2}\right)−\mathrm{2}\:\:+\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{2}\:{artan}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}\:+{ln}\left(\mathrm{1}+{x}\right)\:+{ln}\left(\mathrm{2}\right)−\mathrm{2} \\ $$$${with}\:\mathrm{0}<{x}<\mathrm{1} \\ $$
Commented by math khazana by abdo last updated on 15/Jun/18
$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{2}} \right){dt}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}\right){dt}\:+\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} \right){dt} \\ $$$$={ln}\left(\mathrm{2}\right)\:+{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$={ln}\left(\mathrm{2}\right)\:+\frac{\mathrm{2}\:{arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}\:+{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:+{ln}\left(\mathrm{2}\right)\:−\mathrm{2} \\ $$$$={ln}\left(\mathrm{2}\right)\:+{ln}\left(\mathrm{3}\right)\:+\mathrm{2}\sqrt{\mathrm{2}}\left(\:\frac{\pi}{\mathrm{2}}\:−\boldsymbol{{arctan}}\left(\sqrt{\mathrm{2}}\right)\right)\:−\mathrm{2} \\ $$$$=\pi\sqrt{\mathrm{2}}\:−\mathrm{2}\sqrt{\mathrm{2}}\:{arctan}\left(\sqrt{\mathrm{2}}\right)\:+{ln}\left(\mathrm{6}\right)\:−\mathrm{2}\:. \\ $$