Question Number 37343 by math khazana by abdo last updated on 12/Jun/18

Commented by math khazana by abdo last updated on 15/Jun/18
![if −1<x<0 we get f(x) = (1/x) −(1/x) ∫_0 ^1 (dt/(1−(−x)t^2 )) and chanvement t(√(−x))=u give f^′ (x) = (1/x) −(1/x) ∫_0 ^(√(−x)) (1/(1−u^2 )) (du/( (√(−x)))) =(1/x) −(1/(x(√(−x)))) ∫_0 ^(√(−x)) (du/(1−u^2 )) =(1/x) −(1/(2x(√(−x)))) ∫_0 ^(√(−x)) { (1/(1−u )) +(1/(1+u))}du =(1/x) −(1/(2x(√(−x)))) [ln∣((1+u)/(1−u))∣]_0 ^(√(−x)) = (1/x) −(1/(2x(√(−x)))) ln∣ ((1+(√(−x)))/(1−(√(−x)))) ∣ ⇒ f(x) = ∫_(−1) ^x (dt/t) −∫_(−1) ^x (1/(2t(√(−t))))ln∣ ((1+(√(−t)))/(1−(√(−t))))∣ dt +c c =f(−1) = ∫_0 ^1 ln(1−t^2 )dt ⇒ f(x)=ln(−x) −∫_(−1) ^x (1/(2t(√(−t))))ln∣ ((1+(√(−t)))/(1−(√(−t))))∣ dt + ∫_0 ^1 ln(1−t^2 )dt . with−1<x<0 ....](https://www.tinkutara.com/question/Q37564.png)
Commented by math khazana by abdo last updated on 15/Jun/18
![1) we have f^′ (x)^ = ∫_0 ^1 (t^2 /(1+xt^2 ))dt so if x≠0 f^′ (x)=(1/x) ∫_0 ^1 ((xt^2 +1−1)/(1+xt^2 ))dt =(1/x) −(1/x) ∫_0 ^1 (dt/(1+xt^2 )) for0<x<1 changement t(√x)=u give ∫_0 ^1 (dt/(1+xt^2 )) = ∫_0 ^(√x) (du/(1+u^2 )) (du/( (√x))) =(1/( (√x))) arctan((√x))⇒ f^′ (x) = (1/x) −((arctan((√x)))/(x(√x))) ⇒ f(x) = ∫_1 ^x (dt/t) −∫_1 ^x ((arctan((√t)))/(t(√t))) dt+c c=f(1) =∫_0 ^1 ln(1+t^2 )dt chang.(√t)=u give ∫_1 ^(x ) ((arctan((√t)))/(t(√t))) dt = ∫_1 ^(√x) ((arctan(u))/(u^2 .u)) 2u du =2 ∫_1 ^(√x) ((arctan(u))/u^2 ) du =2{ [−(1/u) arctan(u)]_1 ^(√x) −∫_1 ^(√x) −(1/u) (1/(1+u^2 ))du} =2{ (π/4) −((arctan((√x)))/( (√x))) } +2 ∫_1 ^(√x) (du/(u(1+u^2 ))) =(π/2) −((2arctan((√x)))/( (√x))) +2 ∫_1 ^(√x) ((1/u) −(u/(1+u^2 )))du =(π/2) −((2 arctan((√x)))/( (√x))) +2[ln((u/( (√(1+u^2 )))))]_1 ^(√x) =(π/2) −2((arctan((√x)))/( (√x))) +2 ln(((√x)/( (√(1+x))))) ⇒ f(x)=ln(x) −(π/2) +((2 arctan((√x)))/( (√x))) −2ln(((√x)/( (√(1+x))))) +∫_0 ^1 ln(1+t^2 )dt f(x)=ln(x) −(π/2) +((2arctan((√x)))/( (√x))) −lnx +ln(1+x) +∫_0 ^1 ln(1+t^2 )dt . and by parts ∫_0 ^1 ln(1+t^2 )dt = [t ln(1+t^2 )]_0 ^1 −∫_0 ^1 t ((2t)/(1+t^2 )) dt =ln(2) −2 ∫_0 ^1 ((t^2 +1−1)/(1+t^2 )) dt =ln(2) −2 +2 ∫_0 ^1 (dt/(1+t^2 )) =ln(2)−2 +(π/2) ⇒ f(x)= ((2 artan((√x)))/( (√x))) +ln(1+x) +ln(2)−2 with 0<x<1](https://www.tinkutara.com/question/Q37563.png)
Commented by math khazana by abdo last updated on 15/Jun/18
