Menu Close

let-f-x-0-1-ln-1-xt-2-t-2-dt-with-x-R-1-find-a-explicit-form-of-f-x-2-calculate-0-1-ln-1-t-2-t-2-dt-3-calculate-0-1-ln-1-2t-2-t-2-dt-4-calculate-0-1-ln-1-t-2




Question Number 44201 by abdo.msup.com last updated on 23/Sep/18
let f(x)=∫_0 ^1  ((ln(1+xt^2 ))/t^2 )dt  with x ∈R  1) find a explicit form of f(x)  2)calculate ∫_0 ^1   ((ln(1+t^2 ))/t^2 )dt  3)calculate ∫_0 ^1  ((ln(1+2t^2 ))/t^2 )dt  4) calculate ∫_0 ^1  ((ln(1−t^2 ))/t^2 )dt
letf(x)=01ln(1+xt2)t2dtwithxR1)findaexplicitformoff(x)2)calculate01ln(1+t2)t2dt3)calculate01ln(1+2t2)t2dt4)calculate01ln(1t2)t2dt
Commented by maxmathsup by imad last updated on 25/Sep/18
1) we have f^′ (x) = ∫_0 ^1   (t^2 /(t^2 (1+xt^2 )))dt = ∫_0 ^1    (dt/(1 +xt^2 ))  case 1  x>0 changement t(√x)=u give  f^′ (x)= ∫_0 ^(√x)       (1/(1+u^2 )) (du/( (√x)))  =(1/( (√x))) arctan((√x)) ⇒ f(x) =∫_0 ^x    ((arctan((√t)))/( (√t))) dt +c but c=f(0)=0 ⇒  f(x) =∫_0 ^x    ((actan((√t)))/( (√t)))dt =_((√t)=u)     ∫_0 ^(√x)    ((arctan(u))/u) (2u)du =2 ∫_0 ^(√x)  arctanu du  by parts f(x) =2{  [u arctanu]_0 ^(√x)  −∫_0 ^(√x) (u/(1+u^2 ))du}  =2{(√x)arctan((√x)) −[(1/2)ln(1+u^2 )]_0 ^(√x) }  =2{ (√x)arctan((√x)) −(1/2)ln(1+x)} ⇒f(x)=2(√x)arctan((√x))−ln(1+x)  case 2 x<0 ⇒f^′ (x)= ∫_0 ^1   (dt/(1−(−x)t^2 )) =_(t(√(−x))=u)    ∫_0 ^(√(−x))     (1/(1−u^2 )) (du/( (√(−x))))  =(1/(2(√(−x)))){ ∫_0 ^(√(−x))  { (1/(1−u)) +(1/(1+u))}du} = (1/(2(√(−x))))[ln∣((1+u)/(1−u))∣]_0 ^(√(−x))  ⇒  f^′ (x) = (1/(2(√(−x))))ln∣((1+(√(−x)))/(1−(√(−x))))∣ ⇒f(x) = ∫_x ^0   (1/(2(√(−t))))ln∣((1+(√(−t)))/(1−(√(−t))))∣ +c  c=f(0) =0 ⇒f(x)= ∫_x ^0   (1/(2(√(−t))))ln∣((1+(√(−t)))/(1−(√(−t))))∣ dt  changement (√(−t))=u give f(x) = ∫_(√(−x)) ^0    (1/(2u))ln∣((1+u)/(1−u))∣(−2u)du  = ∫_0 ^(√(−x)) ln∣1+u∣du−∫_0 ^(√(−x)) ln∣1−u∣ du  =∫_0 ^(√(−x)) ln(1+u)du −∫_0 ^(√(−x)) ln(1−u)du  but  ∫_0 ^(√(−x)) ln(1+u)du =_(1+u =α)   ∫_1 ^(1+(√(−x))) ln(α)dα  [αln(α)−α]_1 ^(1+(√(−x)))  =(1+(√(−x)))ln(1+(√(−x)))−(1+(√(−x))) +1  =(1+(√(−x)))ln(1+(√(−x))) −(√(−x)).also  ∫_0 ^(√(−x)) ln(1−u)du =_(1−u =α)   −∫_1 ^(1−(√(−x)))  ln(α)dα  =−[αln(α) −α]_1 ^(1−(√(−x)))   =−{(1−(√(−x)))ln(1−(√(−x)))−(1−(√(−x))) +1}  =−(1−(√(−x)))ln(1−(√(−x))) −(√(−x)) ⇒  f(x)=(1+(√(−x)))ln(1+(√(−x))) +(1−(√(−x)))ln(1−(√(−x))).
1)wehavef(x)=01t2t2(1+xt2)dt=01dt1+xt2case1x>0changementtx=ugivef(x)=0x11+u2dux=1xarctan(x)f(x)=0xarctan(t)tdt+cbutc=f(0)=0f(x)=0xactan(t)tdt=t=u0xarctan(u)u(2u)du=20xarctanudubypartsf(x)=2{[uarctanu]0x0xu1+u2du}=2{xarctan(x)[12ln(1+u2)]0x}=2{xarctan(x)12ln(1+x)}f(x)=2xarctan(x)ln(1+x)case2x<0f(x)=01dt1(x)t2=tx=u0x11u2dux=12x{0x{11u+11+u}du}=12x[ln1+u1u]0xf(x)=12xln1+x1xf(x)=x012tln1+t1t+cc=f(0)=0f(x)=x012tln1+t1tdtchangementt=ugivef(x)=x012uln1+u1u(2u)du=0xln1+udu0xln1udu=0xln(1+u)du0xln(1u)dubut0xln(1+u)du=1+u=α11+xln(α)dα[αln(α)α]11+x=(1+x)ln(1+x)(1+x)+1=(1+x)ln(1+x)x.also0xln(1u)du=1u=α11xln(α)dα=[αln(α)α]11x={(1x)ln(1x)(1x)+1}=(1x)ln(1x)xf(x)=(1+x)ln(1+x)+(1x)ln(1x).
Commented by maxmathsup by imad last updated on 25/Sep/18
2)  we have f(x) =∫_0 ^1  ((ln(1+xt^2 ))/t^2 ) dt ⇒ ∫_0 ^1   ((ln(1+t^2 ))/t^2 )dt  =f(1) = 2 arctan(1)−ln(2) =((2π)/4) −ln(2) =(π/2) −ln(2) .
2)wehavef(x)=01ln(1+xt2)t2dt01ln(1+t2)t2dt=f(1)=2arctan(1)ln(2)=2π4ln(2)=π2ln(2).
Commented by maxmathsup by imad last updated on 25/Sep/18
∫_0 ^1    ((ln(1+2t^2 ))/t^2 )dt =f(2) = 2 (√2)arctan((√2)) −ln(3).
01ln(1+2t2)t2dt=f(2)=22arctan(2)ln(3).
Commented by maxmathsup by imad last updated on 25/Sep/18
4) ∫_0 ^1  ((ln(1−t^2 ))/t^2 )dt =f(−1) =2ln(2) .
4)01ln(1t2)t2dt=f(1)=2ln(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
(df/dx)=∫_0 ^1 (∂/∂x)×{((ln(1+xt^2 ))/t^2 )}dt  =∫_0 ^1 (1/t^2 )×((0+t^2 )/(1+xt^2 )) dt  =∫_0 ^1 (dt/(x((1/x)+t^2 )))  =(1/x)×(1/(1/( (√x) )))∣tan^(−1) ((t/(1/( (√x_  )))))∣_0 ^1   =(1/( (√x) ))tan^(−1) ((√x) )  df(x)=((tan^(−1) ((√x) ))/( (√x) ))dx  f(x)=∫((tan^(−1) ((√x) ))/( (√x) ))dx  y^2 =x  dx=2ydy  ∫((tan^(−1) (y) 2ydy)/y)  =2∫tan^(−1) (y)dy  =2ytan^(−1) (y)−∫(2/(1+y^2 ))×ydy  =2ytan^(−1) (y)−ln(1+y^2 )+c  =2(√x) tan^(−1) ((√x) )−ln(1+x)+c
dfdx=01x×{ln(1+xt2)t2}dt=011t2×0+t21+xt2dt=01dtx(1x+t2)=1x×11xtan1(t1x)01=1xtan1(x)df(x)=tan1(x)xdxf(x)=tan1(x)xdxy2=xdx=2ydytan1(y)2ydyy=2tan1(y)dy=2ytan1(y)21+y2×ydy=2ytan1(y)ln(1+y2)+c=2xtan1(x)ln(1+x)+c

Leave a Reply

Your email address will not be published. Required fields are marked *