Menu Close

let-f-x-0-1-ln-1-xt-3-dt-with-x-lt-1-1-find-a-explicit-form-of-f-x-2-calculate-0-1-ln-1-1-2-t-3-dt-3-calculate-A-0-1-ln-1-sin-t-3-dt-with-0-lt-lt-pi-2-




Question Number 61978 by maxmathsup by imad last updated on 13/Jun/19
let f(x) =∫_0 ^1 ln(1−xt^3 )dt  with  ∣x∣<1  1) find a explicit form of f(x)  2)calculate  ∫_0 ^1 ln(1−(1/( (√2)))t^3 )dt  3) calculate A(θ) =∫_0 ^1 ln(1−sinθ t^3 )dt  with  0<θ<(π/2)
letf(x)=01ln(1xt3)dtwithx∣<11)findaexplicitformoff(x)2)calculate01ln(112t3)dt3)calculateA(θ)=01ln(1sinθt3)dtwith0<θ<π2
Commented by maxmathsup by imad last updated on 14/Jun/19
1) we have f^′ (x) =−∫_0 ^1    (t^3 /(1−xt^3 ))dt =(1/x) ∫_0 ^1  ((1−xt^3 −1)/(1−xt^3 )) dt  =(1/x) −(1/x)∫_0 ^1   (dt/(1−xt^3 ))  let α =^3 (√x) ⇒ ∫_0 ^1   (dt/(1−xt^3 )) =∫_0 ^1  (dt/(1−(αt)^3 ))  =_(αt =u)      ∫_0 ^α    (du/(α(1−u^3 ))) =−(1/α) ∫_0 ^α   (du/(u^3 −1)) let decompose  F(u) =(1/(u^3 −1)) =(1/((u−1)(u^2  +u+1))) =(a/(u−1)) +((bu +c)/(u^2  +u+1))  a =lim_(u→1) (u−1)F(u) =(1/3)  lim_(u→+∞) uF(u) =0 =a+b ⇒b =−(1/3) ⇒F(u)=(1/(3(u−1))) +((−(1/3)u +c)/(u^2  +u+1))  F(0) =−1 =−(1/3) +c ⇒c =−1+(1/3) =−(2/3) ⇒F(u)=(1/(3(u−1))) −(1/3) ((u +2)/(u^2  +u +1)) ⇒  ∫_0 ^α  (du/(u^3 −1)) =∫_0 ^α   (du/(3(u−1))) −(1/6) ∫_0 ^α  ((2u +1+3)/(u^2  +u+1))  = [(1/6)ln((((u−1)^2 )/(u^2  +u+1)))]_0 ^α −(1/2) ∫_0 ^α   (du/(u^2  +u +1))  ∫_0 ^α   (du/(u^2  +u +1)) =∫_0 ^α  (du/((u+(1/2))^2  +(3/4))) =_(u+(1/2)=((√3)/2) z)      (4/3) ∫_(1/( (√3))) ^((2α+1)/( (√3)))    (1/(1+z^2 )) ((√3)/2)dz  =(2/( (√3))){ arctan(((2α +1)/( (√3))))−arctan((1/( (√3)))) ⇒  ∫_0 ^α   (du/(u^3 −1)) =(1/6)ln(((α^2 −2α +1)/(α^2 +α +1)))−(1/( (√3))) arctan(((2α+1)/( (√3))))+(1/2) arctan((1/( (√3)))) ⇒  f^′ (x) =(1/x) +(1/(xα)){(1/6)ln(((α^2 −2α +1)/(α^2  +α +1)))−(1/( (√3))) arctan(((2α+1)/( (√3))))+(1/2)arctan((1/( (√3))))} =A(x)  and α =^3 (√x) ⇒ f(x) =∫ A(x)dx +C    ....be continued...
1)wehavef(x)=01t31xt3dt=1x011xt311xt3dt=1x1x01dt1xt3letα=3x01dt1xt3=01dt1(αt)3=αt=u0αduα(1u3)=1α0αduu31letdecomposeF(u)=1u31=1(u1)(u2+u+1)=au1+bu+cu2+u+1a=limu1(u1)F(u)=13limu+uF(u)=0=a+bb=13F(u)=13(u1)+13u+cu2+u+1F(0)=1=13+cc=1+13=23F(u)=13(u1)13u+2u2+u+10αduu31=0αdu3(u1)160α2u+1+3u2+u+1=[16ln((u1)2u2+u+1)]0α120αduu2+u+10αduu2+u+1=0αdu(u+12)2+34=u+12=32z43132α+1311+z232dz=23{arctan(2α+13)arctan(13)0αduu31=16ln(α22α+1α2+α+1)13arctan(2α+13)+12arctan(13)f(x)=1x+1xα{16ln(α22α+1α2+α+1)13arctan(2α+13)+12arctan(13)}=A(x)andα=3xf(x)=A(x)dx+C.becontinued
Commented by maxmathsup by imad last updated on 14/Jun/19
let use another way  let α =^3 (√x) ⇒  f(x) =∫_0 ^1 ln(1−(αt)^3 )dt =∫_0 ^1 ln{(1−αt)(1+αt +α^2 t^2 )}dt  =∫_0 ^1 ln(1−αt)dt +∫_0 ^1 ln(α^2 t^2  +αt +1)dt  changement 1−αt =u give ∫_0 ^1 ln(1−αt)dt =((−1)/α) ∫_1 ^(1−α)  ln(u) du  =−(1/α)[ulnu−u]_1 ^(1−α)  =−(1/α){ (1−α)ln(1−α)−(1−α) +1}  =−(1/α){ (1−α)ln(1−α) +α} =((α−1)/α)ln(1−α)−1 . by parts   ∫_0 ^1 ln(α^2 t^2  +αt +1)dt =[t ln(α^2 t^2  +αt +1)]_0 ^1  −∫_0 ^1 t   ((2α^2 t +α)/(α^2 t^2  +αt +1)) dt  =ln(α^2  +α +1) −∫_0 ^1  ((2α^2 t^2 +αt)/(α^2 t^2  +αt +1)) dt  ∫_0 ^1  ((2α^2 t^2  +αt)/(α^2 t^2  +αt +1)) dt =∫_0 ^1   ((2(α^2 t^2  +αt +1)−2αt−2 +αt)/(α^2 t^2  +αt +1)) dt  =2 −∫_0 ^1  ((αt +2)/(α^2 t^2  +αt +1)) dt =2−(1/(2α)) ∫_0 ^1   ((2α^2 t +α +3α)/(α^2 t^2  +αt +1)) dt  =2−(1/(2α))[ln(α^2 t^2  +αt+1)]_0 ^1  −(3/2) ∫_0 ^1    (dt/(α^2 t^2  +αt +1))  ∫_0 ^1   (dt/(α^2 t^2  +αt +1)) =(1/α^2 ) ∫_0 ^1   (dt/(t^2  +(t/α) +(1/α^2 ))) =(1/α^2 ) ∫_0 ^1   (dt/(t^2  ++((2t)/(2α)) +(1/(4α^2 )) +(1/α^2 ) −(1/(4α^2 ))))  =(1/α^2 ) ∫_0 ^1     (dt/((t +(1/(2α)))^2  +(3/α^2 ))) =_(t+(1/(2α))=((√3)/α) x)        (1/α^2 ) ∫_(1/(2(√3))) ^((2α+1)/(2(√3)))     (α^2 /3)   (1/(1+x^2 )) ((√3)/α) dx  (we take x>0)  =(1/(α(√3))) { arctan(((2α+1)/(2(√3))))−arctan((1/(2(√3))))} ⇒  ∫_0 ^1  ((2α^2 t^2  +αt)/(α^2 t^2  +αt+1)) dt = 2−(1/(2α))ln(α^2  +α +1)−(3/(2α(√3))){ arctan(((2α +1)/(2(√3))))−arctan((1/(2(√3))))} ⇒  f(x) =((α−1)/α)ln(1−α) −1 +ln(α^2  +α +1)−2+(1/(2α))ln(α^2  +α +1)  +((√3)/(2α)){ arctan(((2α +1)/(2(√3))))−arctan((1/(2(√3))))}  with α =^3 (√x)
letuseanotherwayletα=3xf(x)=01ln(1(αt)3)dt=01ln{(1αt)(1+αt+α2t2)}dt=01ln(1αt)dt+01ln(α2t2+αt+1)dtchangement1αt=ugive01ln(1αt)dt=1α11αln(u)du=1α[ulnuu]11α=1α{(1α)ln(1α)(1α)+1}=1α{(1α)ln(1α)+α}=α1αln(1α)1.byparts01ln(α2t2+αt+1)dt=[tln(α2t2+αt+1)]0101t2α2t+αα2t2+αt+1dt=ln(α2+α+1)012α2t2+αtα2t2+αt+1dt012α2t2+αtα2t2+αt+1dt=012(α2t2+αt+1)2αt2+αtα2t2+αt+1dt=201αt+2α2t2+αt+1dt=212α012α2t+α+3αα2t2+αt+1dt=212α[ln(α2t2+αt+1)]013201dtα2t2+αt+101dtα2t2+αt+1=1α201dtt2+tα+1α2=1α201dtt2++2t2α+14α2+1α214α2=1α201dt(t+12α)2+3α2=t+12α=3αx1α21232α+123α2311+x23αdx(wetakex>0)=1α3{arctan(2α+123)arctan(123)}012α2t2+αtα2t2+αt+1dt=212αln(α2+α+1)32α3{arctan(2α+123)arctan(123)}f(x)=α1αln(1α)1+ln(α2+α+1)2+12αln(α2+α+1)+32α{arctan(2α+123)arctan(123)}withα=3x
Commented by maxmathsup by imad last updated on 14/Jun/19
f(x) =(((α−1)ln(1−α))/α) −3  +(1+(1/(2α)))ln(α^2  +α +1)   +((√3)/(2α)){ arctan(((2α +1)/(2(√3))))−arctan((1/(2(√3))))} .
f(x)=(α1)ln(1α)α3+(1+12α)ln(α2+α+1)+32α{arctan(2α+123)arctan(123)}.
Commented by maxmathsup by imad last updated on 14/Jun/19
2) ∫_0 ^1 ln(1−(1/( (√2)))t^3 ) =f((1/( (√2))) )  we have α =x^(1/3)  ⇒ α =(2^(−(1/2)) )^(1/3)  =2^(−(1/6))  =(1/((^6 (√2)))) ⇒  f(x) =(((α−1)ln(1−α))/α) −3 +(1+(1/(2α)))ln(α^2  +α +1)  +((√3)/(2α)){ arctan(((2α +1)/(2(√3))))−arctan((1/(2(√3))))} .
2)01ln(112t3)=f(12)wehaveα=x13α=(212)13=216=1(62)f(x)=(α1)ln(1α)α3+(1+12α)ln(α2+α+1)+32α{arctan(2α+123)arctan(123)}.
Commented by maxmathsup by imad last updated on 14/Jun/19
3) ∫_0 ^1  ln(1−sinθ t^3 )dθ =f(sinθ)   we α =^3 (√x) ⇒α =^3 (√(sinθ))  so the value of this integral is known.
3)01ln(1sinθt3)dθ=f(sinθ)weα=3xα=3sinθsothevalueofthisintegralisknown.

Leave a Reply

Your email address will not be published. Required fields are marked *