Question Number 61978 by maxmathsup by imad last updated on 13/Jun/19

Commented by maxmathsup by imad last updated on 14/Jun/19
![1) we have f^′ (x) =−∫_0 ^1 (t^3 /(1−xt^3 ))dt =(1/x) ∫_0 ^1 ((1−xt^3 −1)/(1−xt^3 )) dt =(1/x) −(1/x)∫_0 ^1 (dt/(1−xt^3 )) let α =^3 (√x) ⇒ ∫_0 ^1 (dt/(1−xt^3 )) =∫_0 ^1 (dt/(1−(αt)^3 )) =_(αt =u) ∫_0 ^α (du/(α(1−u^3 ))) =−(1/α) ∫_0 ^α (du/(u^3 −1)) let decompose F(u) =(1/(u^3 −1)) =(1/((u−1)(u^2 +u+1))) =(a/(u−1)) +((bu +c)/(u^2 +u+1)) a =lim_(u→1) (u−1)F(u) =(1/3) lim_(u→+∞) uF(u) =0 =a+b ⇒b =−(1/3) ⇒F(u)=(1/(3(u−1))) +((−(1/3)u +c)/(u^2 +u+1)) F(0) =−1 =−(1/3) +c ⇒c =−1+(1/3) =−(2/3) ⇒F(u)=(1/(3(u−1))) −(1/3) ((u +2)/(u^2 +u +1)) ⇒ ∫_0 ^α (du/(u^3 −1)) =∫_0 ^α (du/(3(u−1))) −(1/6) ∫_0 ^α ((2u +1+3)/(u^2 +u+1)) = [(1/6)ln((((u−1)^2 )/(u^2 +u+1)))]_0 ^α −(1/2) ∫_0 ^α (du/(u^2 +u +1)) ∫_0 ^α (du/(u^2 +u +1)) =∫_0 ^α (du/((u+(1/2))^2 +(3/4))) =_(u+(1/2)=((√3)/2) z) (4/3) ∫_(1/( (√3))) ^((2α+1)/( (√3))) (1/(1+z^2 )) ((√3)/2)dz =(2/( (√3))){ arctan(((2α +1)/( (√3))))−arctan((1/( (√3)))) ⇒ ∫_0 ^α (du/(u^3 −1)) =(1/6)ln(((α^2 −2α +1)/(α^2 +α +1)))−(1/( (√3))) arctan(((2α+1)/( (√3))))+(1/2) arctan((1/( (√3)))) ⇒ f^′ (x) =(1/x) +(1/(xα)){(1/6)ln(((α^2 −2α +1)/(α^2 +α +1)))−(1/( (√3))) arctan(((2α+1)/( (√3))))+(1/2)arctan((1/( (√3))))} =A(x) and α =^3 (√x) ⇒ f(x) =∫ A(x)dx +C ....be continued...](https://www.tinkutara.com/question/Q62026.png)
Commented by maxmathsup by imad last updated on 14/Jun/19
![let use another way let α =^3 (√x) ⇒ f(x) =∫_0 ^1 ln(1−(αt)^3 )dt =∫_0 ^1 ln{(1−αt)(1+αt +α^2 t^2 )}dt =∫_0 ^1 ln(1−αt)dt +∫_0 ^1 ln(α^2 t^2 +αt +1)dt changement 1−αt =u give ∫_0 ^1 ln(1−αt)dt =((−1)/α) ∫_1 ^(1−α) ln(u) du =−(1/α)[ulnu−u]_1 ^(1−α) =−(1/α){ (1−α)ln(1−α)−(1−α) +1} =−(1/α){ (1−α)ln(1−α) +α} =((α−1)/α)ln(1−α)−1 . by parts ∫_0 ^1 ln(α^2 t^2 +αt +1)dt =[t ln(α^2 t^2 +αt +1)]_0 ^1 −∫_0 ^1 t ((2α^2 t +α)/(α^2 t^2 +αt +1)) dt =ln(α^2 +α +1) −∫_0 ^1 ((2α^2 t^2 +αt)/(α^2 t^2 +αt +1)) dt ∫_0 ^1 ((2α^2 t^2 +αt)/(α^2 t^2 +αt +1)) dt =∫_0 ^1 ((2(α^2 t^2 +αt +1)−2αt−2 +αt)/(α^2 t^2 +αt +1)) dt =2 −∫_0 ^1 ((αt +2)/(α^2 t^2 +αt +1)) dt =2−(1/(2α)) ∫_0 ^1 ((2α^2 t +α +3α)/(α^2 t^2 +αt +1)) dt =2−(1/(2α))[ln(α^2 t^2 +αt+1)]_0 ^1 −(3/2) ∫_0 ^1 (dt/(α^2 t^2 +αt +1)) ∫_0 ^1 (dt/(α^2 t^2 +αt +1)) =(1/α^2 ) ∫_0 ^1 (dt/(t^2 +(t/α) +(1/α^2 ))) =(1/α^2 ) ∫_0 ^1 (dt/(t^2 ++((2t)/(2α)) +(1/(4α^2 )) +(1/α^2 ) −(1/(4α^2 )))) =(1/α^2 ) ∫_0 ^1 (dt/((t +(1/(2α)))^2 +(3/α^2 ))) =_(t+(1/(2α))=((√3)/α) x) (1/α^2 ) ∫_(1/(2(√3))) ^((2α+1)/(2(√3))) (α^2 /3) (1/(1+x^2 )) ((√3)/α) dx (we take x>0) =(1/(α(√3))) { arctan(((2α+1)/(2(√3))))−arctan((1/(2(√3))))} ⇒ ∫_0 ^1 ((2α^2 t^2 +αt)/(α^2 t^2 +αt+1)) dt = 2−(1/(2α))ln(α^2 +α +1)−(3/(2α(√3))){ arctan(((2α +1)/(2(√3))))−arctan((1/(2(√3))))} ⇒ f(x) =((α−1)/α)ln(1−α) −1 +ln(α^2 +α +1)−2+(1/(2α))ln(α^2 +α +1) +((√3)/(2α)){ arctan(((2α +1)/(2(√3))))−arctan((1/(2(√3))))} with α =^3 (√x)](https://www.tinkutara.com/question/Q62029.png)
Commented by maxmathsup by imad last updated on 14/Jun/19

Commented by maxmathsup by imad last updated on 14/Jun/19

Commented by maxmathsup by imad last updated on 14/Jun/19
