Menu Close

let-f-x-0-1-lnt-ln-1-xt-dt-with-x-lt-1-1-determine-a-explicit-form-for-f-x-2-find-also-g-x-0-1-tlnt-1-xt-dt-3-give-f-n-x-at-form-of-integral-4-calculate-0-1-ln-t-ln-1-




Question Number 64677 by mathmax by abdo last updated on 20/Jul/19
let f(x) =∫_0 ^1 lnt ln(1−xt)dt   with ∣x∣<1  1)determine a explicit form for f(x)  2) find also g(x) =∫_0 ^1  ((tlnt)/(1−xt))dt  3) give f^((n)) (x) at form of integral  4) calculate ∫_0 ^1 ln(t)ln(1−t)dt  and ∫_0 ^1  ln(t)ln(2−t)dt  5) calculate ∫_0 ^1  ((tln(t))/(2−t)) dt .
letf(x)=01lntln(1xt)dtwithx∣<11)determineaexplicitformforf(x)2)findalsog(x)=01tlnt1xtdt3)givef(n)(x)atformofintegral4)calculate01ln(t)ln(1t)dtand01ln(t)ln(2t)dt5)calculate01tln(t)2tdt.
Commented by mathmax by abdo last updated on 21/Jul/19
1) f(x) =∫_0 ^1 lntln(1−xt)dt  case 1  0<x<1  changement xt =u  give f(x) =∫_0 ^x ln((u/x))ln(1−u)(du/x) =(1/x) ∫_0 ^x (lnu−lnx)ln(1−u)du  =(1/x) ∫_0 ^x ln(u)ln(1−u)du−((lnx)/x) ∫_0 ^x  ln(1−u)du  ∫_0 ^x ln(1−u)du =_(1−u =z)    ∫_1 ^(1−x) ln(z)(−dz)=∫_(1−x) ^1 ln(z)dz  [zlnz−z]_(1−x) ^1  =−1−((1−x)ln(1−x)−(1−x))  =−1−(1−x)ln(1−x) +1−x =−x−(1−x)ln(1−x)  also we have ln^′ (1−u) =((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n   ⇒  ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c  (c=0) =−Σ_(n=1) ^∞   (u^n /n) ⇒  ∫_0 ^x ln(u)ln(1−u)du =−∫_0 ^x ln(u)Σ_(n=1) ^∞  (u^n /n) du  =−Σ_(n=1) ^∞  (1/n) ∫_0 ^x  u^n lnu du   by parts  f^′  =u^n  and g =lnu ⇒  w_n =∫_0 ^x u^n ln(u)du =[(1/(n+1))u^(n+1) lnu]_0 ^x  −∫_0 ^x  (u^(n+1) /(n+1)) (du/u)  =((lnx)/(n+1))x^(n+1)  −(1/(n+1)) ∫_0 ^x  u^n  du =((lnx)/(n+1))x^(n+1)  −(1/(n+1))[(u^(n+1) /(n+1))]_0 ^x   =((lnx)/(n+1))x^(n+1)  −(x^(n+1) /((n+1)^2 )) ⇒  ∫_0 ^x ln(u)ln(1−u)du =−Σ_(n=1) ^∞  (1/n){((lnx)/(n+1))x^(n+1) −(x^(n+1) /((n+1)^2 ))}  =−lnx Σ_(n=1) ^∞   (x^(n+1) /(n(n+1))) +Σ_(n=1) ^∞  (x^(n+1) /(n(n+1)^2 )) ⇒  f(x) =−lnx Σ_(n=1) ^∞  (x^n /(n(n+1))) +Σ_(n=1) ^∞  (x^n /(n(n+1)^2 )) −((lnx)/x)(−x−(1−x)ln(1−x))  f(x) =−lnxΣ_(n=1) ^∞  (x^n /(n(n+1))) +Σ_(n=1) ^∞  (x^n /(n(n+1)^2 )) +lnx( 1+(1−x)ln(1−x)).
1)f(x)=01lntln(1xt)dtcase10<x<1changementxt=ugivef(x)=0xln(ux)ln(1u)dux=1x0x(lnulnx)ln(1u)du=1x0xln(u)ln(1u)dulnxx0xln(1u)du0xln(1u)du=1u=z11xln(z)(dz)=1x1ln(z)dz[zlnzz]1x1=1((1x)ln(1x)(1x))=1(1x)ln(1x)+1x=x(1x)ln(1x)alsowehaveln(1u)=11u=n=0unln(1u)=n=0un+1n+1+c(c=0)=n=1unn0xln(u)ln(1u)du=0xln(u)n=1unndu=n=11n0xunlnudubypartsf=unandg=lnuwn=0xunln(u)du=[1n+1un+1lnu]0x0xun+1n+1duu=lnxn+1xn+11n+10xundu=lnxn+1xn+11n+1[un+1n+1]0x=lnxn+1xn+1xn+1(n+1)20xln(u)ln(1u)du=n=11n{lnxn+1xn+1xn+1(n+1)2}=lnxn=1xn+1n(n+1)+n=1xn+1n(n+1)2f(x)=lnxn=1xnn(n+1)+n=1xnn(n+1)2lnxx(x(1x)ln(1x))f(x)=lnxn=1xnn(n+1)+n=1xnn(n+1)2+lnx(1+(1x)ln(1x)).
Commented by mathmax by abdo last updated on 21/Jul/19
we have Σ_(n=1) ^∞  (x^n /(n(n+1))) =Σ_(n=1) ^∞ ((1/n)−(1/(n+1)))x^n   =Σ_(n=1) ^∞  (x^n /n) −Σ_(n=1) ^∞  (x^n /(n+1)) =−ln(1−x)−Σ_(n=2) ^∞  (x^(n−1) /n)  =−ln(1−x)−(1/x)( Σ_(n=1) ^∞  (x^n /n)  −x)  =−ln(1−x)+(1/x)ln(1−x) +1 =((1/x)−1)ln(1−x) +1  let   decompose  F(t) =(1/(t(t+1)^2 ))  ⇒F(t) =(a/t) +(b/(t+1)) +(c/((t+1)^2 ))  a =lim_(t→0)  tF(t) =1  c =lim_(t→−1) (t+1)^2  F(t) =−1 ⇒F(t) =(1/t) +(b/(t+1)) −(1/((t+1)^2 ))  lim_(t→+∞)  tF(t) =0 =a+b ⇒b=−1 ⇒ F(t) =(1/t)−(1/(t+1)) −(1/((t+1)^2 )) ⇒  Σ_(n=1) ^∞  (x^n /(n(n+1)^2 )) =Σ_(n=1) ^∞  (x^n /n) −Σ_(n=1) ^∞  (x^n /(n+1)) −Σ_(n=1) ^∞  (x^n /((n+1)^2 ))  =−ln(1−x)−Σ_(n=2) ^∞  (x^(n−1) /n) −Σ_(n=1) ^∞  (x^n /((n+1)^2 ))  =−ln(1−x)−(1/x) {Σ_(n=1) ^∞  (x^n /n)−1} −Σ_(n=1) ^∞  (x^n /((n+1)^2 ))  =−ln(1−x)+((ln(1−x))/x) +(1/x) −Σ_(n=1) ^∞  (x^n /((n+1)^2 ))
wehaven=1xnn(n+1)=n=1(1n1n+1)xn=n=1xnnn=1xnn+1=ln(1x)n=2xn1n=ln(1x)1x(n=1xnnx)=ln(1x)+1xln(1x)+1=(1x1)ln(1x)+1letdecomposeF(t)=1t(t+1)2F(t)=at+bt+1+c(t+1)2a=limt0tF(t)=1c=limt1(t+1)2F(t)=1F(t)=1t+bt+11(t+1)2limt+tF(t)=0=a+bb=1F(t)=1t1t+11(t+1)2n=1xnn(n+1)2=n=1xnnn=1xnn+1n=1xn(n+1)2=ln(1x)n=2xn1nn=1xn(n+1)2=ln(1x)1x{n=1xnn1}n=1xn(n+1)2=ln(1x)+ln(1x)x+1xn=1xn(n+1)2
Commented by mathmax by abdo last updated on 21/Jul/19
Σ_(n=1) ^∞  (x^n /(n(n+1)^2 )) =−ln(1−x)+((ln(1−x))/x) +1 −Σ_(n=1) ^∞  (x^n /((n+1)^2 )) ⇒  f(x) =
n=1xnn(n+1)2=ln(1x)+ln(1x)x+1n=1xn(n+1)2f(x)=
Commented by mathmax by abdo last updated on 22/Jul/19
2) we have f^′ (x) =∫_0 ^1 ((−t)/(1−xt))lnt dt =−∫_0 ^1  ((tlnt)/(1−xt))dt =−g(x) ⇒  g(x)=−f^′ (x)  the function f is known  rest to calculate f^′ (x)  3) we have f^′ (x) =∫_0 ^1  ((tlnt)/(xt−1)) dt =∫_0 ^1    ((lnt)/(x−(1/t))) dt ⇒  f^((n)) (x) =∫_0 ^1 ((1/(x−(1/t))))^((n−1)) lntdt =∫_0 ^1   (((−1)^(n−1) (n−1)!)/((x−(1/t))^n ))lntdt  f^((n)) (x)=(−1)^(n−1) (n−1)! ∫_0 ^1    ((t^n lnt)/((xt−1)^n ))dt
2)wehavef(x)=01t1xtlntdt=01tlnt1xtdt=g(x)g(x)=f(x)thefunctionfisknownresttocalculatef(x)3)wehavef(x)=01tlntxt1dt=01lntx1tdtf(n)(x)=01(1x1t)(n1)lntdt=01(1)n1(n1)!(x1t)nlntdtf(n)(x)=(1)n1(n1)!01tnlnt(xt1)ndt

Leave a Reply

Your email address will not be published. Required fields are marked *