Question Number 42086 by maxmathsup by imad last updated on 17/Aug/18

Answered by maxmathsup by imad last updated on 18/Aug/18
![1) we have f(x) = ∫_0 ^2 (((e^t +e^(−t) )/2)/(2x ((e^t −e^(−t) )/2)+1)) dt= (1/2)∫_0 ^2 ((e^t +e^(−t) )/(xe^t −x e^(−t) +1)) dt =(1/2) ∫_0 ^2 ((e^(2t) +1)/(x e^(zt) −x +et)) dt ⇒2f(x) =_(e^t =u) ∫_1 ^e^2 ((u^2 +1)/(xu^2 −x +u)) (du/u) = ∫_1 ^e^2 ((u^2 +1)/(u(xu^2 +u −x))) du let decompose F(u) =((u^2 +1)/(u(xu^2 +u−x))) poles of F Δ =1−4(−x^2 ) =1+4x^2 ⇒u_1 =((−1+(√(4x^2 +1)))/(2x)) u_2 =((−1−(√(4x^2 +1)))/(2x)) (x≠0) ⇒ F(u) =((u^2 +1)/(x u(u−u_1 )(u−u_2 ))) =(a/u) +(b/(u−u_1 )) +(c/(u−u_2 )) a =lim_(u→0) u F(u) =(1/(x u_1 u_2 )) =−(1/x) b =lim_(u→u_1 ) (u−u_1 )F(u) =((u_1 ^2 +1)/(xu_1 (u_1 −u_2 ))) c =lim_(u→u_2 ) (u−u_2 )F(u) =((u_2 ^2 +1)/(xu_(2 ) (u_2 −u_1 ))) ⇒ f(x) = ∫_1 ^e^2 F(u)du = a ∫_1 ^e^2 (du/u) +b ∫_1 ^e^2 (du/(u−u_1 )) +c ∫_1 ^e^2 (du/(u−u_2 )) =a [ln∣u∣]_1 ^e^2 +b [ln∣u−u_1 ∣]_(1 ) ^e^2 +c [ln∣u−u_2 ∣]_1 ^e^2 =2a +b (ln∣((e^2 −u_1 )/(1−u_1 ))∣) +c ln∣((e^2 −u_2 )/(1−u_2 ))∣ f(x) =((−2)/x) +(((((−1+(√(4x^2 +1)))/(2x)))^2 +1)/(x(((−1+(√(4x^2 +1)))/(2x)))(((√(4x^2 +1))/x))))ln∣ ((e^2 −((−1+(√(4x^2 +1)))/(2x)))/(1−((−1+(√(4x^2 +1)))/(2x))))∣ + (((((1+(√(4x^2 +1)))/(2x)))^2 +1)/(x(((−1−(√(4x^2 +1)))/(2x)))(−((√(4x^2 +1))/x))))ln∣((e^2 +((1+(√(4x^2 +1)))/(2x)))/(1+((1+(√(4x^2 +1)))/(2x))))∣ f(x)=((−2)/x) + (((−1+(√(4x^2 +1)))^2 +4x^2 )/(2x))ln∣((2e^2 x −(−1+(√(4x^2 +1))))/(2x−(−1+(√(4x^2 +1))))∣ −(((1+(√(4x^2 +1)))^2 +4x^2 )/(2x))ln∣ ((2e^2 x +1+(√(4x^2 +1)))/(2x+1+(√(4x^2 +1))))∣](https://www.tinkutara.com/question/Q42123.png)
Commented by maxmathsup by imad last updated on 18/Aug/18

Commented by math khazana by abdo last updated on 18/Aug/18
