Menu Close

let-f-x-0-2-ch-t-2xsh-t-1-dt-1-find-a-simple-form-of-f-x-2-calculate-0-2-ch-t-1-sh-t-dt-3-calculate-0-2-ch-t-3sh-t-1-dt-




Question Number 42086 by maxmathsup by imad last updated on 17/Aug/18
let    f(x)  =∫_0 ^2      ((ch(t))/(2xsh(t) +1)) dt  1) find  a simple form of f(x)  2)  calculate  ∫_0 ^2     ((ch(t))/(1+sh(t)))dt  3) calculate  ∫_0 ^2     ((ch(t))/(3sh(t) +1))dt .
letf(x)=02ch(t)2xsh(t)+1dt1)findasimpleformoff(x)2)calculate02ch(t)1+sh(t)dt3)calculate02ch(t)3sh(t)+1dt.
Answered by maxmathsup by imad last updated on 18/Aug/18
1)  we have f(x) = ∫_0 ^2      (((e^t  +e^(−t) )/2)/(2x ((e^t −e^(−t) )/2)+1)) dt= (1/2)∫_0 ^2      ((e^t  +e^(−t) )/(xe^t  −x e^(−t)  +1)) dt  =(1/2) ∫_0 ^2     ((e^(2t)  +1)/(x e^(zt)  −x +et)) dt ⇒2f(x) =_(e^t  =u)     ∫_1 ^e^2     ((u^2  +1)/(xu^2 −x +u)) (du/u)  = ∫_1 ^e^2       ((u^2  +1)/(u(xu^2  +u −x))) du  let decompose F(u) =((u^2  +1)/(u(xu^2 +u−x)))  poles of F  Δ =1−4(−x^2 ) =1+4x^2   ⇒u_1 =((−1+(√(4x^2  +1)))/(2x))  u_2 =((−1−(√(4x^2  +1)))/(2x))      (x≠0) ⇒  F(u) =((u^2  +1)/(x u(u−u_1 )(u−u_2 ))) =(a/u) +(b/(u−u_1 )) +(c/(u−u_2 ))  a =lim_(u→0) u F(u) =(1/(x u_1 u_2 ))  =−(1/x)  b =lim_(u→u_1 ) (u−u_1 )F(u) =((u_1 ^2  +1)/(xu_1 (u_1 −u_2 )))  c =lim_(u→u_2 ) (u−u_2 )F(u) =((u_2 ^2  +1)/(xu_(2 ) (u_2 −u_1 ))) ⇒  f(x) = ∫_1 ^e^2   F(u)du  = a ∫_1 ^e^2    (du/u)  +b ∫_1 ^e^2    (du/(u−u_1 ))  +c ∫_1 ^e^2    (du/(u−u_2 ))  =a [ln∣u∣]_1 ^e^2     +b  [ln∣u−u_1 ∣]_(1 ) ^e^2       +c  [ln∣u−u_2 ∣]_1 ^e^2    =2a  +b  (ln∣((e^2  −u_1 )/(1−u_1 ))∣) +c ln∣((e^2 −u_2 )/(1−u_2 ))∣  f(x) =((−2)/x)  +(((((−1+(√(4x^2  +1)))/(2x)))^2  +1)/(x(((−1+(√(4x^2  +1)))/(2x)))(((√(4x^2  +1))/x))))ln∣  ((e^2 −((−1+(√(4x^2  +1)))/(2x)))/(1−((−1+(√(4x^2  +1)))/(2x))))∣  + (((((1+(√(4x^2  +1)))/(2x)))^2  +1)/(x(((−1−(√(4x^2  +1)))/(2x)))(−((√(4x^2  +1))/x))))ln∣((e^2   +((1+(√(4x^2  +1)))/(2x)))/(1+((1+(√(4x^2  +1)))/(2x))))∣  f(x)=((−2)/x)  +  (((−1+(√(4x^2  +1)))^2  +4x^2 )/(2x))ln∣((2e^2 x −(−1+(√(4x^2  +1))))/(2x−(−1+(√(4x^2  +1))))∣  −(((1+(√(4x^2  +1)))^2  +4x^2 )/(2x))ln∣  ((2e^2 x +1+(√(4x^2  +1)))/(2x+1+(√(4x^2  +1))))∣
1)wehavef(x)=02et+et22xetet2+1dt=1202et+etxetxet+1dt=1202e2t+1xeztx+etdt2f(x)=et=u1e2u2+1xu2x+uduu=1e2u2+1u(xu2+ux)duletdecomposeF(u)=u2+1u(xu2+ux)polesofFΔ=14(x2)=1+4x2u1=1+4x2+12xu2=14x2+12x(x0)F(u)=u2+1xu(uu1)(uu2)=au+buu1+cuu2a=limu0uF(u)=1xu1u2=1xb=limuu1(uu1)F(u)=u12+1xu1(u1u2)c=limuu2(uu2)F(u)=u22+1xu2(u2u1)f(x)=1e2F(u)du=a1e2duu+b1e2duuu1+c1e2duuu2=a[lnu]1e2+b[lnuu1]1e2+c[lnuu2]1e2=2a+b(lne2u11u1)+clne2u21u2f(x)=2x+(1+4x2+12x)2+1x(1+4x2+12x)(4x2+1x)lne21+4x2+12x11+4x2+12x+(1+4x2+12x)2+1x(14x2+12x)(4x2+1x)lne2+1+4x2+12x1+1+4x2+12xf(x)=2x+(1+4x2+1)2+4x22xln2e2x(1+4x2+1)2x(1+4x2+1(1+4x2+1)2+4x22xln2e2x+1+4x2+12x+1+4x2+1
Commented by maxmathsup by imad last updated on 18/Aug/18
2f(x) = −(2/x) +....⇒  f(x) =−(1/x) +(((−1+(√(4x^2 +1)))^2  +4x^2 )/(4x))ln∣((2e^2 x−(−1+(√(4x^2  +1)))/(2x−(−1+(√(4x^2 +1))))∣  −(((1+(√(4x^2 +1))))^2  +4x^2 )/(4x))ln∣  ((2e^2 x +1 +(√(4x^2  +1)))/(2x+1 +(√(4x^2  +1))))∣.
2f(x)=2x+.f(x)=1x+(1+4x2+1)2+4x24xln2e2x(1+4x2+12x(1+4x2+1(1+4x2+1))2+4x24xln2e2x+1+4x2+12x+1+4x2+1.
Commented by math khazana by abdo last updated on 18/Aug/18
∫_0 ^2    ((ch(t))/(1+sh(t)))dt =f((1/2))  =−2 +(((−1+(√2))^2  +1)/2)ln∣ ((e^2  −(−1+(√2)))/(1−(−1+(√2))))∣  −(((1+(√2))^2  +1)/2)ln∣((e^2  +1+(√2))/(2+(√2)))∣  =−2  +(2−(√2))ln∣((e^2  +1−(√2))/(2−(√2)))∣−(2+(√2))ln∣((e^2  +1+(√2))/(2+(√2)))∣ .
02ch(t)1+sh(t)dt=f(12)=2+(1+2)2+12lne2(1+2)1(1+2)(1+2)2+12lne2+1+22+2=2+(22)lne2+1222(2+2)lne2+1+22+2.

Leave a Reply

Your email address will not be published. Required fields are marked *