Menu Close

Let-f-x-0-2-x-t-dt-x-gt-0-then-minimum-value-of-f-x-is-




Question Number 39342 by rahul 19 last updated on 05/Jul/18
Let f(x) = ∫_(0 ) ^2  ∣x−t∣ dt (x>0) , then  minimum value of f(x) is ?
Letf(x)=02xtdt(x>0),thenminimumvalueoff(x)is?
Answered by MrW3 last updated on 05/Jul/18
for 0<x≤2:  f(x) = ∫_(0 ) ^2  ∣x−t∣ dt   =∫_(0 ) ^x  (x−t)dt+∫_x ^2 (x−t)dt  =[xt−(t^2 /2)]_0 ^x −[xt−(t^2 /2)]_x ^2   =(x^2 −(x^2 /2))−(2x−2−x^2 +(x^2 /2))  =x^2 −2x+2  =(x−1)^2 +1≥1    for 2≤x:  f(x) = ∫_(0 ) ^2  ∣x−t∣ dt  = ∫_(0 ) ^2  (x−t) dt  =[xt−(t^2 /2)]_0 ^2   =2(x−1)≥2    min. f(x)=1 at x=1.
for0<x2:f(x)=02xtdt=0x(xt)dt+x2(xt)dt=[xtt22]0x[xtt22]x2=(x2x22)(2x2x2+x22)=x22x+2=(x1)2+11for2x:f(x)=02xtdt=02(xt)dt=[xtt22]02=2(x1)2min.f(x)=1atx=1.
Commented by rahul 19 last updated on 05/Jul/18
Thank you sir ! ����

Leave a Reply

Your email address will not be published. Required fields are marked *