Menu Close

let-f-x-0-2pi-sin-2t-1-x-cos-t-dt-1-find-a-explicit-form-of-f-x-2-find-also-g-x-0-2pi-sin-2t-cost-1-xcost-2-dt-3-find-the-value-of-0-2pi-sin-2t-1-3-cos-t-dt




Question Number 48264 by Abdo msup. last updated on 21/Nov/18
let f(x)=∫_0 ^(2π)   ((sin(2t))/(1+x cos(t)))dt  1) find a explicit form of f(x)  2) find also g(x)=∫_0 ^(2π)  ((sin(2t)cost)/((1+xcost)^2 ))dt  3)find the value of ∫_0 ^(2π)   ((sin(2t))/(1+3 cos(t)))dt and  ∫_0 ^(2π)  ((cost sin(2t))/((1+3cost)^2 ))dt .
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{x}\:{cos}\left({t}\right)}{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{also}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{sin}\left(\mathrm{2}{t}\right){cost}}{\left(\mathrm{1}+{xcost}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{1}+\mathrm{3}\:{cos}\left({t}\right)}{dt}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{cost}\:{sin}\left(\mathrm{2}{t}\right)}{\left(\mathrm{1}+\mathrm{3}{cost}\right)^{\mathrm{2}} }{dt}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *