Menu Close

let-f-x-0-2pi-sint-x-sint-dt-1-calculate-f-x-2-calculate-g-x-0-2pi-sint-x-sint-2-dt-3-calculste-for-n-N-0-2pi-sint-x-sint-n-dt-4-calculate-0




Question Number 54372 by maxmathsup by imad last updated on 02/Feb/19
let  f(x) =∫_0 ^(2π)   ((sint)/(x+sint))dt     1) calculate  f(x)  2) calculate g(x) =∫_0 ^(2π)   ((sint)/((x+sint)^2 )) dt   3) calculste for n∈N    ∫_0 ^(2π)  ((sint)/((x+sint)^n ))dt   4) calculate ∫_0 ^(2π)    ((sint)/(2+sint))dt  and ∫_0 ^(2π)   ((sint)/((2+sint)^2 ))dt .
letf(x)=02πsintx+sintdt1)calculatef(x)2)calculateg(x)=02πsint(x+sint)2dt3)calculstefornN02πsint(x+sint)ndt4)calculate02πsint2+sintdtand02πsint(2+sint)2dt.
Commented by maxmathsup by imad last updated on 03/Feb/19
1) we have f(x)=∫_0 ^(2π)  ((x+sint −x)/(x+sint))dt =2π −x ∫_0 ^(2π)    (dt/(x+sint))  chang.e^(it) =z give  ∫_0 ^(2π)   (dt/(x+sint)) =∫_(∣z∣=1)    (1/(x +((z−z^(−1) )/(2i)))) (dz/(iz)) = ∫_(∣z∣=1)    (dz/(iz(x+((z−z^(−1) )/(2i)))))  =∫_(∣z∣=1)   (dz/(ixz +((z^2 −1)/2))) =∫_(∣z∣=1)     ((2dz)/(2ixz+z^2 −1)) =∫_(∣z∣=1)     ((2dz)/(z^2  +2ixz −1))  let ϕ(z) =(2/(z^2 +2ixz −1))  poles of ϕ ?  Δ^′ =−x^2 +1 =1−x^2   case 1      1−x^2 >0 ⇒ z_1 = −ix +(√(1−x^2 ))and z_2 =−ix−(√(1−x^2 ))  ∣z_1 ∣−1 =(√(1−x^2 +x^2 ))=1−1=0 ⇒∣z_1 ∣=1  ∣z_2 ∣ −1 =(√(x^2 +1−x^2 ))−1=0 ⇒ ∣z_2 ∣=1  ∫_(∣z∣=1) ϕ(z)dz =2iπ {Res(ϕ,z_1 ) +Res(ϕ,z_2 )} but ϕ(z)=(2/((z−z_1 )(z−z_2 )))  Res(ϕ,z_1 )  =(2/(z_1 −z_2 )) =(2/(2(√(1−x^2 )))) =(1/( (√(1−x^2 ))))  Res(ϕ,z_2 ) = (2/(z_2 −z_1 )) =(2/(−2(√(1−x^2 )))) =((−1)/( (√(1−x^2 )))) ⇒∫_(∣z∣=1) ϕ(z)dz =0  ⇒f(x)=2π  case2  1−x^2 <0 ⇒∣x∣>1 ⇒Δ^′ =(i(√(x^2 −1))))^2  ⇒  z_1 =−ix +i(√(x^2 −1)) and z_2 =−ix−i(√(x^2 −1))    if x>1  ∣z_1 ∣ −1 =∣x−(√(x^2 −1))∣ −1  =x−(√(x^2 −1))−1 =x−1−(√(x^2 −1))  (x−1)^2 −(x^2 −1)=x^2 −2x +1−x^2  +1 =−2(x−1)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1 =∣x+(√(x^2 −1))∣−1 =x−1 +(√(x^2 −1))>0 ⇒∣z_2 ∣>1 (out of circle)  ∫_(∣z∣=1)  ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) =(2/(z_1 −z_2 )) =(2/(2i(√(x^2 −1)))) =(1/(i(√(x^2 −1)))) ⇒  ∫_(∣z∣=1) ϕ(z)dz =2π (1/( (√(x^2 −1)))) =((2π)/( (√(x^2 −1)))) ⇒f(x)=2π −((2πx)/( (√(x^2 −1))))  =2π{(((√(x^2 −1))−x)/( (√(x^2 −1))))} .rest to study the case x<−1...
1)wehavef(x)=02πx+sintxx+sintdt=2πx02πdtx+sintchang.eit=zgive02πdtx+sint=z∣=11x+zz12idziz=z∣=1dziz(x+zz12i)=z∣=1dzixz+z212=z∣=12dz2ixz+z21=z∣=12dzz2+2ixz1letφ(z)=2z2+2ixz1polesofφ?Δ=x2+1=1x2case11x2>0z1=ix+1x2andz2=ix1x2z11=1x2+x2=11=0⇒∣z1∣=1z21=x2+1x21=0z2∣=1z∣=1φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)}butφ(z)=2(zz1)(zz2)Res(φ,z1)=2z1z2=221x2=11x2Res(φ,z2)=2z2z1=221x2=11x2z∣=1φ(z)dz=0f(x)=2πcase21x2<0⇒∣x∣>1Δ=(ix21))2z1=ix+ix21andz2=ixix21ifx>1z11=∣xx211=xx211=x1x21(x1)2(x21)=x22x+1x2+1=2(x1)<0⇒∣z1∣<1z21=∣x+x211=x1+x21>0⇒∣z2∣>1(outofcircle)z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=2z1z2=22ix21=1ix21z∣=1φ(z)dz=2π1x21=2πx21f(x)=2π2πxx21=2π{x21xx21}.resttostudythecasex<1
Commented by maxmathsup by imad last updated on 03/Feb/19
2) we have f(x)=∫_0 ^(2π)   ((sint)/(x+sint)) dt ⇒f^′ (x) =−∫_0 ^(2π)   ((sint)/((x+sint)^2 ))dt =−g(x) ⇒  g(x)=−f^′ (x)  case 1  ∣x∣<1 ⇒f(x)=2π ⇒g^′ (x)=0  case 2  x>1 ⇒f(x)=2π −2π (x/( (√(x^2 −1)))) ⇒g^′ (x)=+2π ((x/( (√(x^2 −1)))))^′   =2π (((√(x^2 −1))−x  (x/( (√(x^2 −1)))))/(x^2 −1)) =2π ((x^2 −1−x^2 )/((x^2 −1)(√(x^2 −1)))) =−((2π)/((x^2 −1)(√(x^2 −1))))
2)wehavef(x)=02πsintx+sintdtf(x)=02πsint(x+sint)2dt=g(x)g(x)=f(x)case1x∣<1f(x)=2πg(x)=0case2x>1f(x)=2π2πxx21g(x)=+2π(xx21)=2πx21xxx21x21=2πx21x2(x21)x21=2π(x21)x21
Commented by maxmathsup by imad last updated on 03/Feb/19
4) ∫_0 ^(2π)  ((sint)/(2 +sint))dt =f(2) =2π −2π (2/( (√3))) =2π(1−(2/( (√3))))=((2π((√3)−2))/( (√3)))  ∫_0 ^(2π)   ((sint)/((2+sint)^2 )) dt =g(2)=((−2π)/(3(√3)))
4)02πsint2+sintdt=f(2)=2π2π23=2π(123)=2π(32)302πsint(2+sint)2dt=g(2)=2π33
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
1)∫_0 ^(2π) ((sint)/(x+sint))dt  ∫((x+sint−x)/(x+sint))dt  ∫dt−x∫(dt/(x+((2tan(t/2))/(1+tan^2 (t/2)))))  ∫dt−x∫((sec^2 (t/2))/(xtan^2 (t/2)+x+2tan(t/2)))dt  ∫dt−∫((sec^2 (t/2))/(tan^2 (t/2)+2tan(t/2)×(1/x)+(1/x^2 )+1−(1/x^2 )))  ∫dt−2∫((sec^2 (t/2)×(1/2))/((tan(t/2)+(1/x))^2 +((√(1−(1/x^2 ))) )^2 ))   ∫dt−2∫((d(tan(t/2)+(1/x)))/((tan(t/2)+(1/x))^2 +((√(1−(1/x^2 ))) )^2 ))  so answer is  ∣t−(2/( (√(1−(1/x^2 )))))tan^(−1) (((tan(t/2)+(1/x))/( (√(1−(1/x^2 ))) )))∣_0 ^(2π)   =[2π−{(2/( (√(1−(1/x^2 )))))tan^(−1) (((tanπ+(1/x))/( (√(1−(1/x^2 )))))−((tan0+(1/x))/( (√(1−(1/x^2 ))))))]  =2π  pls check mistKe if any...
1)02πsintx+sintdtx+sintxx+sintdtdtxdtx+2tant21+tan2t2dtxsec2t2xtan2t2+x+2tant2dtdtsec2t2tan2t2+2tant2×1x+1x2+11x2dt2sec2t2×12(tant2+1x)2+(11x2)2dt2d(tant2+1x)(tant2+1x)2+(11x2)2soanswerist211x2tan1(tant2+1x11x2)02π=[2π{211x2tan1(tanπ+1x11x2tan0+1x11x2)]=2πplscheckmistKeifany

Leave a Reply

Your email address will not be published. Required fields are marked *