Menu Close

let-f-x-0-2pi-sint-x-sint-dt-withx-gt-1-1-calculate-f-x-2-calculate-0-2pi-sint-x-sint-2-dt-3-find-the-value-of-0-2pi-sint-2-sint-dt-and-0-2pi-sint-




Question Number 46851 by maxmathsup by imad last updated on 01/Nov/18
let f(x)=∫_0 ^(2π)   ((sint)/(x +sint))dt  withx>1  1) calculate f(x)  2) calculate ∫_0 ^(2π)    ((sint)/((x+sint)^2 ))dt  3)find the value of ∫_0 ^(2π)   ((sint)/(2+sint))dt and ∫_0 ^(2π)   ((sint)/((2+sint)^2 ))dt
letf(x)=02πsintx+sintdtwithx>11)calculatef(x)2)calculate02πsint(x+sint)2dt3)findthevalueof02πsint2+sintdtand02πsint(2+sint)2dt
Commented by maxmathsup by imad last updated on 02/Nov/18
1) we have f(x)=∫_0 ^(2π)  ((x+sint −x)/(x+sint)) dt =2π −x ∫_0 ^(2π)   (dt/(x+sint))  changement e^(it) =z give  ∫_0 ^(2π)   (dt/(x+sint)) =∫_(∣z∣=1)   (1/(x+((z−z^(−1) )/(2i)))) (dz/(iz))  = ∫_(∣z∣=1)  ((2idz)/(iz(2ix +z−z^(−1) ))) = ∫_(∣z∣=1)  ((2idz)/(−2xz+iz^2  −i)) =∫_(∣z∣=1)  ((2dz)/(2ixz+z^2 −1))  =∫_(∣z∣=1)  ((2dz)/(z^2  +2ixz −1))  let ϕ(z)=(2/(z^2  +2ixz −1)) poles of ϕ?  Δ^′  =(ix)^2  +1 =1−x^2  =(i(√(x^2 −1)))^2  ⇒z_1 =−ix+i(√(x^2 −1))  z_2 =−ix−i(√(x^2 −1))  ∣z_1 ∣−1 =∣−x+(√(x^2 −1))∣−1 =(√(x^2 −1))−x−1=(√(x^2 −1))−(x+1)  and x^2 −1−(x+1)^2  =x^2 −1−x^2 −2x−1 =−2x−2<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1 =∣x+(√(x^2 −1))∣−1 =x−1+(√(x^2 −1))>0 because x>1  ⇒z_2 is out of circle  so ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 ) but ϕ(z) =(2/((z−z_1 )(z−z_2 ))) ⇒  Res(ϕ,z_1 ) =lim_(z→z_1 ) (z−z_1 )ϕ(z) =(2/(z_1 −z_2 )) =(2/(2i(√(x^2 −1)))) ⇒  ∫_(∣z∣=1) ϕ(z)dz =2iπ (1/(i(√(x^2 −1)))) =((2π)/( (√(x^2 −1)))) ⇒ ★f(x)=((2π)/( (√(x^2 −1)))) ★  with x>1
1)wehavef(x)=02πx+sintxx+sintdt=2πx02πdtx+sintchangementeit=zgive02πdtx+sint=z∣=11x+zz12idziz=z∣=12idziz(2ix+zz1)=z∣=12idz2xz+iz2i=z∣=12dz2ixz+z21=z∣=12dzz2+2ixz1letφ(z)=2z2+2ixz1polesofφ?Δ=(ix)2+1=1x2=(ix21)2z1=ix+ix21z2=ixix21z11=∣x+x211=x21x1=x21(x+1)andx21(x+1)2=x21x22x1=2x2<0⇒∣z1∣<1z21=∣x+x211=x1+x21>0becausex>1z2isoutofcirclesoz∣=1φ(z)dz=2iπRes(φ,z1)butφ(z)=2(zz1)(zz2)Res(φ,z1)=limzz1(zz1)φ(z)=2z1z2=22ix21z∣=1φ(z)dz=2iπ1ix21=2πx21f(x)=2πx21withx>1
Commented by maxmathsup by imad last updated on 02/Nov/18
2) we have f^′ (x) =∫_0 ^(2π)  (∂/∂x){ ((sint)/(x+sint))}dt =−∫_0 ^(2π)   ((sint)/((x+sint)^2 ))dt ⇒  ∫_0 ^(2π)   ((sint)/((x+sint)^2 ))dt =−f^′ (x) but f(x) =((2π)/( (√(x^2 −1)))) =2π(x^2 −1)^(−(1/2))  ⇒  f^′ (x) =2π(−(1/2))(2x)(x^2 −1)^(−(3/2))  =((−2πx)/((x^2 −1)^(3/2) )) =((−2πx)/((x^2 −1)(√(x^2 −1)))) ⇒  ∫_0 ^(2π)  ((sint)/((x+sint)^2 )) dt =((2πx)/((x^2 −1)(√(x^2 −1))))  with x>1 .
2)wehavef(x)=02πx{sintx+sint}dt=02πsint(x+sint)2dt02πsint(x+sint)2dt=f(x)butf(x)=2πx21=2π(x21)12f(x)=2π(12)(2x)(x21)32=2πx(x21)32=2πx(x21)x2102πsint(x+sint)2dt=2πx(x21)x21withx>1.
Commented by maxmathsup by imad last updated on 02/Nov/18
3) we have ∫_0 ^(2π)   ((sint)/(2+sint)) dt =f(2) =((2π)/( (√(2^2 −1)))) =((2π)/( (√3)))  ∫_0 ^(2π)   ((sint)/((2+sint)^2 ))dt =f^′ (2) =((4π)/((2^2 −1)(√(2^2 −1)))) =((4π)/(3(√3))) .
3)wehave02πsint2+sintdt=f(2)=2π221=2π302πsint(2+sint)2dt=f(2)=4π(221)221=4π33.

Leave a Reply

Your email address will not be published. Required fields are marked *