Menu Close

let-f-x-0-arctan-xt-2-cos-t-2-dt-1-find-a-explicite-form-of-f-x-2-find-a-explicite-form-of-f-x-3-find-the-value-of-0-cos-t-2-arctan-t-2-dt-and-0-cos-t-2-arc




Question Number 42374 by maxmathsup by imad last updated on 24/Aug/18
let f(x) = ∫_0 ^∞    arctan(xt^2 )cos(t^2 ) dt  1) find a explicite form of f^′ (x)  2) find a explicite form of f(x)  3) find the value of   ∫_0 ^∞   cos(t^2 ) arctan(t^2 )dt   and  ∫_0 ^∞  cos(t^2 )arctan(2t^2 )dt
letf(x)=0arctan(xt2)cos(t2)dt1)findaexpliciteformoff(x)2)findaexpliciteformoff(x)3)findthevalueof0cos(t2)arctan(t2)dtand0cos(t2)arctan(2t2)dt
Commented by maxmathsup by imad last updated on 26/Aug/18
1) we have f(x)=∫_0 ^∞   arctan(xt^2 )cos(t^2 )dt ⇒  f^′ (x) =∫_0 ^∞      (t^2 /(1+x^2 t^4 )) cos(t^2 ) dt ⇒2f^′ (x) = ∫_(−∞) ^(+∞)   ((t^2  cos(t^2 ))/(1+x^2 t^4 ))dt  =Re( ∫_(−∞) ^(+∞)   ((t^2  e^(it^2 ) )/(1+x^2 t^4 )))dt  let consider the complex function  ϕ(z) =((z^2  e^(iz^2 ) )/(x^2 z^4  +1))  we have ϕ(z)  =((z^2  e^(iz^2 ) )/((xz^2 −i)(xz^2  +i)))  =((z^2  e^(iz^2 ) )/(x^2 (z^2  −(i/x))(z^2  +(i/x))))   if x>0  we get   ϕ(z) =((z^2  e^(iz^2 ) )/(x^2 (z−(1/( (√x)))e^((iπ)/4) )(z+(1/( (√x)))e^((iπ)/4) )(z −(1/( (√x))) e^(−((iπ)/4)) )(z + (1/( (√x))) e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,(1/( (√x)))e^((iπ)/4) ) +Res(ϕ,−(1/( (√x))) e^(−((iπ)/4)) )}  Res(ϕ, (1/( (√x))) e^((iπ)/4) ) =(((1/x)ie^(i(1/x)i) )/(x^2 ((2/( (√x)))e^((iπ)/4) )(2 (i/x)))) = (((√x)e^(−(1/x)) )/(4x^2 e^((iπ)/4) )) =((√x)/(4x^2 )) e^(−(1/x)−((iπ)/4))   =(1/4) (e^(−(1/x)) /(x(√x))) e^(−((iπ)/4))   Res(ϕ,−(1/( (√x))) e^(−((iπ)/4)) )  = (((((−i)/x))e^(i(−(i/x))) )/(x^2 (((−2i)/x))(((−2)/( (√x)))e^(−((iπ)/4)) ))) =−(1/4) (e^(1/x) /(x(√x))) e^((iπ)/4)  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/(4x(√x))){ e^(−(1/(x ))−((iπ)/4))   − e^((1/x) +((iπ)/4)) }=−((iπ)/(2x(√x))){ e^((1/x) +((iπ)/4))  −e^(−(1/x)−((iπ)/4)) }  =−((iπ)/(2x(√x))){2i Im(e^((1/x)+((iπ)/4)) )} = (π/(x(√x)))  (1/( (√2))) e^(1/x)  ⇒2f^′ (x)= (π/(x(√(2x)))) e^(1/x)  ⇒  f^′ (x) = (π/(2x(√(2x)))) e^(1/x)  ⇒ f(x) = ∫^x    (π/(2t(√(2t)))) e^(1/t)  dt +c.  ....be continued...
1)wehavef(x)=0arctan(xt2)cos(t2)dtf(x)=0t21+x2t4cos(t2)dt2f(x)=+t2cos(t2)1+x2t4dt=Re(+t2eit21+x2t4)dtletconsiderthecomplexfunctionφ(z)=z2eiz2x2z4+1wehaveφ(z)=z2eiz2(xz2i)(xz2+i)=z2eiz2x2(z2ix)(z2+ix)ifx>0wegetφ(z)=z2eiz2x2(z1xeiπ4)(z+1xeiπ4)(z1xeiπ4)(z+1xeiπ4)+φ(z)dz=2iπ{Res(φ,1xeiπ4)+Res(φ,1xeiπ4)}Res(φ,1xeiπ4)=1xiei1xix2(2xeiπ4)(2ix)=xe1x4x2eiπ4=x4x2e1xiπ4=14e1xxxeiπ4Res(φ,1xeiπ4)=(ix)ei(ix)x2(2ix)(2xeiπ4)=14e1xxxeiπ4+φ(z)dz=2iπ4xx{e1xiπ4e1x+iπ4}=iπ2xx{e1x+iπ4e1xiπ4}=iπ2xx{2iIm(e1x+iπ4)}=πxx12e1x2f(x)=πx2xe1xf(x)=π2x2xe1xf(x)=xπ2t2te1tdt+c..becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *