let-f-x-0-arctan-xt-2-cos-t-2-dt-1-find-a-explicite-form-of-f-x-2-find-a-explicite-form-of-f-x-3-find-the-value-of-0-cos-t-2-arctan-t-2-dt-and-0-cos-t-2-arc Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42374 by maxmathsup by imad last updated on 24/Aug/18 letf(x)=∫0∞arctan(xt2)cos(t2)dt1)findaexpliciteformoff′(x)2)findaexpliciteformoff(x)3)findthevalueof∫0∞cos(t2)arctan(t2)dtand∫0∞cos(t2)arctan(2t2)dt Commented by maxmathsup by imad last updated on 26/Aug/18 1)wehavef(x)=∫0∞arctan(xt2)cos(t2)dt⇒f′(x)=∫0∞t21+x2t4cos(t2)dt⇒2f′(x)=∫−∞+∞t2cos(t2)1+x2t4dt=Re(∫−∞+∞t2eit21+x2t4)dtletconsiderthecomplexfunctionφ(z)=z2eiz2x2z4+1wehaveφ(z)=z2eiz2(xz2−i)(xz2+i)=z2eiz2x2(z2−ix)(z2+ix)ifx>0wegetφ(z)=z2eiz2x2(z−1xeiπ4)(z+1xeiπ4)(z−1xe−iπ4)(z+1xe−iπ4)∫−∞+∞φ(z)dz=2iπ{Res(φ,1xeiπ4)+Res(φ,−1xe−iπ4)}Res(φ,1xeiπ4)=1xiei1xix2(2xeiπ4)(2ix)=xe−1x4x2eiπ4=x4x2e−1x−iπ4=14e−1xxxe−iπ4Res(φ,−1xe−iπ4)=(−ix)ei(−ix)x2(−2ix)(−2xe−iπ4)=−14e1xxxeiπ4⇒∫−∞+∞φ(z)dz=2iπ4xx{e−1x−iπ4−e1x+iπ4}=−iπ2xx{e1x+iπ4−e−1x−iπ4}=−iπ2xx{2iIm(e1x+iπ4)}=πxx12e1x⇒2f′(x)=πx2xe1x⇒f′(x)=π2x2xe1x⇒f(x)=∫xπ2t2te1tdt+c.….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Which-of-the-following-set-of-horizontal-forces-would-lead-an-object-in-equilibrium-a-5N-10N-20N-b-6N-12N-18N-c-8N-8N-8N-b-2N-4N-8N-16N-Next Next post: Find-value-of-such-that-the-following-system-has-infinite-many-solutions-x-3z-3-2x-y-z-2-x-2y-z-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.